def train_dialogue_model(domain_file, stories_file, output_path, kwargs): agent = Agent(domain_file, policies=[MemoizationPolicy(), KerasPolicy()]) agent.train(stories_file, validation_split=0.1, **kwargs) agent.persist(output_path)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from examples.concerts.policy import ConcertPolicy from conversationinsights.agent import Agent from conversationinsights.policies.memoization import MemoizationPolicy if __name__ == '__main__': logging.basicConfig(level="INFO") training_data_file = 'examples/concerts/data/stories.md' model_path = 'examples/concerts/models/policy/init' agent = Agent("examples/concerts/concert_domain.yml", policies=[MemoizationPolicy(), ConcertPolicy()]) agent.train(training_data_file, augmentation_factor=50, max_history=2, epochs=500, batch_size=10, validation_split=0.2) agent.persist(model_path)