Пример #1
0
    def testImage(self):
        print "Testing!"
        self.queue.put("Working...")
        nImage = image.resize((200, 150), Image.NEAREST)
        imgArr = numpy.asarray(nImage)
        t = time.time()
        j = numpy.array(ExtractCharacters.LabelPixels(imgArr),
                        dtype=numpy.uint8)
        print time.time() - t
        imagesWithCenters = ExtractCharacters.PasteCharacters(imgArr, j)
        numbers = []
        if alreadyWorking.locked():
            alreadyWorking.release()

        for imageWCenter in imagesWithCenters:
            testVec = map(norm, convert.getFeatureVecFromImg(imageWCenter[0]))
            if alreadyWorking.locked():
                return  #another thread has come into play!

            with lock:
                net.ClearNodes()
                net.SetInputs(testVec)
                rawOutputs = net.ComputeOutput()

            outputString = str(rawOutputs.index(max(rawOutputs)))
            numbers.append((imageWCenter[1], outputString))
        numbers.sort()
        numbers = "".join(map(lambda elem: elem[1], numbers))
        print numbers
        self.queue.put("Neural network read: " + numbers)
        print "done testing"
Пример #2
0
    def testImage(self):
        print "Testing!"
        self.queue.put("Working...")
        nImage = image.resize((200,150),Image.NEAREST)
        imgArr = numpy.asarray(nImage)
        t = time.time()
        j = numpy.array(ExtractCharacters.LabelPixels(imgArr),dtype=numpy.uint8)
        print time.time()-t
        imagesWithCenters = ExtractCharacters.PasteCharacters(imgArr,j)
        numbers = []
        if alreadyWorking.locked():
            alreadyWorking.release()

        for imageWCenter in imagesWithCenters:
            testVec = map(norm,convert.getFeatureVecFromImg(imageWCenter[0]))
            if alreadyWorking.locked():
                return #another thread has come into play!

            with lock:
                net.ClearNodes()
                net.SetInputs(testVec)
                rawOutputs = net.ComputeOutput()

            outputString =  str(rawOutputs.index(max(rawOutputs)))
            numbers.append((imageWCenter[1],outputString))
        numbers.sort()
        numbers = "".join(map(lambda elem: elem[1], numbers))
        print numbers
        self.queue.put("Neural network read: " + numbers)
        print "done testing"
def TestNumber(testVec):
    testVec = map(norm,convert.getFeatureVecFromImg(testVec))
    net.ClearNodes()
    net.SetInputs(testVec)
    rawOutputs = net.ComputeOutput()
    outputs = map (Indicator,net.ComputeOutput())
    print "Confidence Values:"
    print ("\n" + fspace).join(textwrap.wrap(fspace+str(rawOutputs).ljust(10)))
    print "Greatest Confidence:"
    print fspace + str(rawOutputs.index(max(rawOutputs))) + " with " + str(100*max(rawOutputs)) + "% confidence"
    print 
    return rawOutputs.index(max(rawOutputs))
Пример #4
0
    def testDigit(self):
        print "Testing!"
        try:
            featureVec = map(norm, convert.getFeatureVecFromImg(image))
        except:
            return

        with lock:
            net.ClearNodes()
            net.SetInputs(featureVec)
            rawOutputs = net.ComputeOutput()

        outputs = map(Indicator, rawOutputs)
        roundedOutputs = map(lambda x: "%.3f" % round(x, 3), rawOutputs)
        outputString =  "Confidence Values:\n" + \
                tabspace+str(roundedOutputs).ljust(10) + "\n" + \
                "Greatest Confidence:\n"  + \
                tabspace + str(rawOutputs.index(max(rawOutputs))) + " with %3.3f" % (100*max(rawOutputs)) + "% confidence"
        self.queue.put(outputString)
        print "done testing"
Пример #5
0
    def testDigit(self):
        print "Testing!"
        try:
            featureVec = map(norm,convert.getFeatureVecFromImg(image))
        except:
            return

        with lock:
            net.ClearNodes()
            net.SetInputs(featureVec)
            rawOutputs = net.ComputeOutput()

        outputs = map (Indicator,rawOutputs)
        roundedOutputs = map (lambda x: "%.3f" % round (x,3),rawOutputs)
        outputString =  "Confidence Values:\n" + \
                tabspace+str(roundedOutputs).ljust(10) + "\n" + \
                "Greatest Confidence:\n"  + \
                tabspace + str(rawOutputs.index(max(rawOutputs))) + " with %3.3f" % (100*max(rawOutputs)) + "% confidence"
        self.queue.put(outputString)
        print "done testing"