Пример #1
0
 def __init__(self, pretrain=False):
 
     config = MultiWozConfig()
     manager = UserDataManager(config.data_dir, config.data_file)
     voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size()
     self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE)
     self.optim = optim.Adam(self.user.parameters(), lr=config.lr_simu)
     self.goal_gen = GoalGenerator(config.data_dir+'/goal/goal_model.pkl')
     self.cfg = config
     self.manager = manager
     self.user.eval()
     
     if pretrain:
         self.print_per_batch = config.print_per_batch
         self.save_dir = config.save_dir
         self.save_per_epoch = config.save_per_epoch
         seq_goals, seq_usr_dass, seq_sys_dass = manager.data_loader_seg()
         train_goals, train_usrdas, train_sysdas, \
         test_goals, test_usrdas, test_sysdas, \
         val_goals, val_usrdas, val_sysdas = manager.train_test_val_split_seg(
             seq_goals, seq_usr_dass, seq_sys_dass)
         self.data_train = (train_goals, train_usrdas, train_sysdas, config.batchsz)
         self.data_valid = (val_goals, val_usrdas, val_sysdas, config.batchsz)
         self.data_test = (test_goals, test_usrdas, test_sysdas, config.batchsz)
         self.nll_loss = nn.NLLLoss(ignore_index=0) # PAD=0
         self.bce_loss = nn.BCEWithLogitsLoss()
     else:
         self.load(config.load)
Пример #2
0
class UserNeural():
    def __init__(self, pretrain=False):
    
        config = MultiWozConfig()
        manager = UserDataManager(config.data_dir, config.data_file)
        voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size()
        self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE)
        self.optim = optim.Adam(self.user.parameters(), lr=config.lr_simu)
        self.goal_gen = GoalGenerator(config.data_dir+'/goal/goal_model.pkl')
        self.cfg = config
        self.manager = manager
        self.user.eval()
        
        if pretrain:
            self.print_per_batch = config.print_per_batch
            self.save_dir = config.save_dir
            self.save_per_epoch = config.save_per_epoch
            seq_goals, seq_usr_dass, seq_sys_dass = manager.data_loader_seg()
            train_goals, train_usrdas, train_sysdas, \
            test_goals, test_usrdas, test_sysdas, \
            val_goals, val_usrdas, val_sysdas = manager.train_test_val_split_seg(
                seq_goals, seq_usr_dass, seq_sys_dass)
            self.data_train = (train_goals, train_usrdas, train_sysdas, config.batchsz)
            self.data_valid = (val_goals, val_usrdas, val_sysdas, config.batchsz)
            self.data_test = (test_goals, test_usrdas, test_sysdas, config.batchsz)
            self.nll_loss = nn.NLLLoss(ignore_index=0) # PAD=0
            self.bce_loss = nn.BCEWithLogitsLoss()
        else:
            self.load(config.load)
            
    def user_loop(self, data):
        batch_input = to_device(padding_data(data))
        a_weights, t_weights, argu = self.user(batch_input['goals'], batch_input['goals_length'], \
                                         batch_input['posts'], batch_input['posts_length'], batch_input['origin_responses'])
        
        loss_a, targets_a = 0, batch_input['origin_responses'][:, 1:] # remove sos_id
        for i, a_weight in enumerate(a_weights):
            loss_a += self.nll_loss(a_weight, targets_a[:, i])
        loss_a /= i
        loss_t = self.bce_loss(t_weights, batch_input['terminal'])
        loss_a += self.cfg.alpha * kl_gaussian(argu)
        return loss_a, loss_t
        
    def imitating(self, epoch):
        """
        train the user simulator by simple imitation learning (behavioral cloning)
        """
        self.user.train()
        a_loss, t_loss = 0., 0.
        data_train_iter = batch_iter(self.data_train[0], self.data_train[1], self.data_train[2], self.data_train[3])
        for i, data in enumerate(data_train_iter):
            self.optim.zero_grad()
            loss_a, loss_t = self.user_loop(data)
            a_loss += loss_a.item()
            t_loss += loss_t.item()
            loss = loss_a + loss_t
            loss.backward()
            self.optim.step()
            
            if (i+1) % self.print_per_batch == 0:
                a_loss /= self.print_per_batch
                t_loss /= self.print_per_batch
                logging.debug('<<user simulator>> epoch {}, iter {}, loss_a:{}, loss_t:{}'.format(epoch, i, a_loss, t_loss))
                a_loss, t_loss = 0., 0.
        
        if (epoch+1) % self.save_per_epoch == 0:
            self.save(self.save_dir, epoch)
        self.user.eval()
        
    def imit_test(self, epoch, best):
        """
        provide an unbiased evaluation of the user simulator fit on the training dataset
        """        
        a_loss, t_loss = 0., 0.
        data_valid_iter = batch_iter(self.data_valid[0], self.data_valid[1], self.data_valid[2], self.data_valid[3])
        for i, data in enumerate(data_valid_iter):
            loss_a, loss_t = self.user_loop(data)
            a_loss += loss_a.item()
            t_loss += loss_t.item()
            
        a_loss /= i
        t_loss /= i
        logging.debug('<<user simulator>> validation, epoch {}, loss_a:{}, loss_t:{}'.format(epoch, a_loss, t_loss))
        loss = a_loss + t_loss
        if loss < best:
            logging.info('<<user simulator>> best model saved')
            best = loss
            self.save(self.save_dir, 'best')
            
        a_loss, t_loss = 0., 0.
        data_test_iter = batch_iter(self.data_test[0], self.data_test[1], self.data_test[2], self.data_test[3])
        for i, data in enumerate(data_test_iter):
            loss_a, loss_t = self.user_loop(data)
            a_loss += loss_a.item()
            t_loss += loss_t.item()
            
        a_loss /= i
        t_loss /= i
        logging.debug('<<user simulator>> test, epoch {}, loss_a:{}, loss_t:{}'.format(epoch, a_loss, t_loss))
        return best
		
    def test(self):
        def sequential(da_seq):
            da = []
            cur_act = None
            for word in da_seq:
                if word in ['<PAD>', '<UNK>', '<SOS>', '<EOS>', '(', ')']:
                    continue
                if '-' in word:
                    cur_act = word
                else:
                    if cur_act is None:
                        continue
                    da.append(cur_act+'-'+word)
            return da
            
        def f1(pred, real):
            if not real:
                return 0, 0, 0
            TP, FP, FN = 0, 0, 0
            for item in real:
                if item in pred:
                    TP += 1
                else:
                    FN += 1
            for item in pred:
                if item not in real:
                    FP += 1
            return TP, FP, FN
    
        data_test_iter = batch_iter(self.data_test[0], self.data_test[1], self.data_test[2], self.data_test[3])
        a_TP, a_FP, a_FN, t_corr, t_tot = 0, 0, 0, 0, 0
        eos_id = self.user.usr_decoder.eos_id
        for i, data in enumerate(data_test_iter):
            batch_input = to_device(padding_data(data))
            a_weights, t_weights, argu = self.user(batch_input['goals'], batch_input['goals_length'], \
                                         batch_input['posts'], batch_input['posts_length'], batch_input['origin_responses'])
            usr_a = []
            for a_weight in a_weights:
                usr_a.append(a_weight.argmax(1).cpu().numpy())
            usr_a = np.array(usr_a).T.tolist()
            a = []
            for ua in usr_a:
                if eos_id in ua:
                    ua = ua[:ua.index(eos_id)]
                a.append(sequential(self.manager.id2sentence(ua)))
            targets_a = []
            for ua_sess in data[1]:
                for ua in ua_sess:
                    targets_a.append(sequential(self.manager.id2sentence(ua[1:-1])))
            TP, FP, FN = f1(a, targets_a)
            a_TP += TP
            a_FP += FP
            a_FN += FN
                    
            t = t_weights.ge(0).cpu().tolist()
            targets_t = batch_input['terminal'].cpu().long().tolist()
            judge = np.array(t) == np.array(targets_t)
            t_corr += judge.sum()
            t_tot += judge.size

        prec = a_TP / (a_TP + a_FP)
        rec = a_TP / (a_TP + a_FN)
        F1 = 2 * prec * rec / (prec + rec)
        print(a_TP, a_FP, a_FN, F1)
        print(t_corr, t_tot, t_corr/t_tot)
        
    def save(self, directory, epoch):
        if not os.path.exists(directory):
            os.makedirs(directory)
            
        torch.save(self.user.state_dict(), directory + '/' + str(epoch) + '_simulator.mdl')
        logging.info('<<user simulator>> epoch {}: saved network to mdl'.format(epoch))
    
    def load(self, filename):
        user_mdl = filename + '_simulator.mdl'
        if os.path.exists(user_mdl):
            self.user.load_state_dict(torch.load(user_mdl))
            logging.info('<<user simulator>> loaded checkpoint from file: {}'.format(user_mdl))
    
    def init_session(self):
        self.time_step = -1
        self.topic = 'NONE'
        self.goal = self.goal_gen.get_user_goal()
        self.goal_input = torch.LongTensor(self.manager.get_goal_id(self.manager.usrgoal2seq(self.goal)))
        self.goal_len_input = torch.LongTensor([len(self.goal_input)]).squeeze()
        self.sys_da_id_stack = [] # to save sys da history

    def predict(self, state, sys_action):
        """
        Predict an user act based on state and preorder system action.
        Args:
            state (tuple): Dialog state.
            sys_action (tuple): Preorder system action.s
        Returns:
            usr_action (tuple): User act.
            session_over (boolean): True to terminate session, otherwise session continues.
            reward (float): Reward given by user.
        """
        sys_seq_turn = self.manager.sysda2seq(self.manager.ref_data2stand(sys_action), self.goal)
        self.sys_da_id_stack += self.manager.get_sysda_id([sys_seq_turn])
        sys_seq_len = torch.LongTensor([max(len(sen), 1) for sen in self.sys_da_id_stack])
        max_sen_len = sys_seq_len.max().item()
        sys_seq = torch.LongTensor(padding(self.sys_da_id_stack, max_sen_len))
        usr_a, terminal = self.user.select_action(self.goal_input, self.goal_len_input, sys_seq, sys_seq_len)
        usr_action = self.manager.usrseq2da(self.manager.id2sentence(usr_a), self.goal)
        
        return capital(usr_action), terminal
Пример #3
0
        sys_seq_len = torch.LongTensor([max(len(sen), 1) for sen in self.sys_da_id_stack])
        max_sen_len = sys_seq_len.max().item()
        sys_seq = torch.LongTensor(padding(self.sys_da_id_stack, max_sen_len))
        usr_a, terminal = self.user.select_action(self.goal_input, self.goal_len_input, sys_seq, sys_seq_len)
        usr_action = self.manager.usrseq2da(self.manager.id2sentence(usr_a), self.goal)
        
        return capital(usr_action), terminal

if __name__ == '__main__':
    manager = UserDataManager('../../../../data/multiwoz', 'annotated_user_da_with_span_full.json')
    seq_goals, seq_usr_dass, seq_sys_dass = manager.data_loader_seg()
    train_goals, train_usrdas, train_sysdas, \
    test_goals, test_usrdas, test_sysdas, \
    val_goals, val_usrdas, val_sysdas = manager.train_test_val_split_seg(
        seq_goals, seq_usr_dass, seq_sys_dass)
    data_train = batch_iter(train_goals, train_usrdas, train_sysdas, 32)
    data_valid = batch_iter(val_goals, val_usrdas, val_sysdas, 32)
    data_test = batch_iter(test_goals, test_usrdas, test_sysdas, 32)
    for data in data_train:
        batch_input = to_device(padding_data(data))
        break
    for k, v in batch_input.items():
        print(k, v.shape)
    voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size()
    cfg = MultiWozConfig()
    user = VHUS(cfg, voc_goal_size, voc_usr_size, voc_sys_size)
    
    a_weights, t_weights, _ = user(batch_input['goals'], batch_input['goals_length'], batch_input['posts'], batch_input['posts_length'])#, batch_input['origin_responses'])
    print(len(a_weights)) #[L, B, V]
    print(t_weights.shape) #[B]