Пример #1
0
    def __init__(self, filename, configurations, delay=False):

        self.corpus = Corpus()

        self.coded_configurations = [
            Config.code_config(c) for c in configurations
        ]
        ## pode ser feito em paralelo
        train, dev = prep.processKnowledgeBase(filename, validate=True)

        self.dev = dev

        self.train = train

        if not delay:
            for k, qs in self.train.items():
                qs_q = []

                for qtext in qs:

                    qformat = {}

                    for cc in self.coded_configurations:
                        qformat[cc] = process_chain(qtext, cc)

                    qs_q.append((qtext, qformat))

                self.corpus.add(
                    QA([Question(qtext, qformat) for qtext, qformat in qs_q],
                       Answer(k)))
Пример #2
0
    def loadCorpus(filename: str, configuration):

        corpus = Corpus()

        kb = extract(filename, validate=False)

        Config.preprocessing_method_functions["tfidf"] = TFidf(kb,
                                                               configuration,
                                                               runtime=True)

        for k, qa in kb.items():

            qs = qa[0]
            a = qa[1]

            questions = []

            for qtext in qs:
                qformat = {configuration: process_chain(qtext, configuration)}

                questions.append(Question(qtext, qformat))

            corpus.add(QA(questions, Answer(k, a)))

        return corpus
Пример #3
0
    def idfsearchGroup(self, idfconfig, metric_functions,
                       metric_functions_names):

        self.corpus = Corpus()

        idfformat = Config.code_config(idfconfig)

        Config.preprocessing_method_functions["tfidf"] = TFidf(
            self.train, idfformat)

        for k, qs in self.train.items():

            qs_q = []
            # print(qs)
            for qtext in qs:
                qformat = {}

                qformat[idfformat] = process_chain(qtext, idfformat)

                qs_q.append((qtext, qformat))

            self.corpus.add(
                QA([Question(qtext, qformat) for qtext, qformat in qs_q],
                   Answer(k)))

        metrics = []
        i = 0
        for mf in metric_functions:
            metrics.append(
                Metric(idfformat, mf, name=metric_functions_names[i]))
            i += 1

        return self._evaluate(self.corpus.queryGroup, metrics)
Пример #4
0
def process(filestem):
    new_complex = "%s.relaxed.xml"%filestem
    new_refined = "%s.refined.xml"%filestem

    corpus = Corpus()
    corpus.readFromFile(filestem)

    #CorpusRefiner(corpus,NOT).resolveAll()
    #CorpusRefiner(corpus,EQUAL).resolveAll()
    #CorpusRefiner(corpus,COREFER).resolveAll()
    #CorpusRefiner(corpus,RELENT).resolveAll()
    #CorpusRefiner(corpus,MUTUAL).resolveAll()
    CorpusRefiner(corpus,Nesting).resolveAll()
    #CorpusRefiner(corpus,Pack).resolveAll()

    corpus.writeToFile(new_refined)
Пример #5
0
def initialisation():
    global beta, GLOBAL_REF_MODEL
    dataset_path = '.\\dataset\\*.txt'
    models = []
    for file_name in glob.glob(dataset_path):
        models.append(Corpus(path_to_corpus=file_name).freq_result)
    m = Model(*models)
    beta = m.beta
    GLOBAL_REF_MODEL = m.global_ref_model
Пример #6
0
def initialisation():
    global beta, GLOBAL_REF_MODEL
    dataset_path = r'C:\PFE\datasets\v1\*.txt'
    models = []
    for file_name in glob.glob(dataset_path):
        models.append(
            Corpus(path_to_corpus=file_name).bi_phonemes_frequencies_list)
    m = Model(*models)
    beta = m.beta
    GLOBAL_REF_MODEL = m.global_reference_model
Пример #7
0
    def post(self):
        data = Classification.parser.parse_args()
        speech = data['speech']
        with open(file='.\\text.txt', encoding="utf-8") as file:
            txt = file.read()

        txt = txt + ' ' + speech + ' '
        speaker = Model(Corpus(corpus=txt).freq_result, GLOBAL_REF_MODEL)
        phi = speaker.beta

        if phi >= beta:
            return {'classification': 'Pathological'}
        else:
            return {'classification': 'Healthy'}
Пример #8
0
class Config(object):

    preprocessing_methods = [
        "pontuation",
        "acents",
        "numbers",
        "lowercase",
        "tokenize",
        "stopw_nltk",
        "stopw_minimal",
        "stem",
        "tfidf",
    ]

    preprocessing_method_functions = {
        "pontuation": prep.removePunctuation,
        "acents": unidecode.unidecode,
        "numbers": prep.removeNumbers,
        "lowercase": prep.lowerCase,
        "tokenize": prep.tokenize,
        "stem": prep.stem,
        "stopw_nltk": prep.RemoveStopWords(prep.stopwords_list["nltk"]),
        "stopw_minimal": prep.RemoveStopWords(prep.stopwords_list["minimal"]),
        "tfidf": None
    }

    def __init__(self, filename, configurations, delay=False):

        self.corpus = Corpus()

        self.coded_configurations = [
            Config.code_config(c) for c in configurations
        ]
        ## pode ser feito em paralelo
        train, dev = prep.processKnowledgeBase(filename, validate=True)

        self.dev = dev

        self.train = train

        if not delay:
            for k, qs in self.train.items():
                qs_q = []

                for qtext in qs:

                    qformat = {}

                    for cc in self.coded_configurations:
                        qformat[cc] = process_chain(qtext, cc)

                    qs_q.append((qtext, qformat))

                self.corpus.add(
                    QA([Question(qtext, qformat) for qtext, qformat in qs_q],
                       Answer(k)))

    def search(self, metric_functions, metric_functions_names):

        return self._search(metric_functions, metric_functions_names,
                            self.corpus.query)

    def searchGroup(self, metric_functions, metric_functions_names):

        return self._search(metric_functions, metric_functions_names,
                            self.corpus.queryGroup)

    def _search(self, metric_functions, metric_functions_names, query_func):

        metrics = []
        i = 0
        for mf in metric_functions:
            for cc in self.coded_configurations:
                metrics.append(Metric(cc, mf, name=metric_functions_names[i]))
            i += 1

        return self._evaluate(query_func, metrics)

    #Config.preprocessing_method_functions["tfidf"] = prep.TFidf(
    #self.train,
    #idfqformat)

    def idfsearch(self, idfconfig, metric_functions, metric_functions_names):

        self.corpus = Corpus()

        idfformat = Config.code_config(idfconfig)

        Config.preprocessing_method_functions["tfidf"] = TFidf(
            self.train, idfformat)

        for k, qs in self.train.items():

            qs_q = []
            #print(qs)
            for qtext in qs:

                qformat = {}

                qformat[idfformat] = process_chain(qtext, idfformat)

                qs_q.append((qtext, qformat))

            self.corpus.add(
                QA([Question(qtext, qformat) for qtext, qformat in qs_q],
                   Answer(k)))

        metrics = []
        i = 0
        for mf in metric_functions:
            metrics.append(
                Metric(idfformat, mf, name=metric_functions_names[i]))
            i += 1

        return self._evaluate(self.corpus.query, metrics)

    def idfsearchGroup(self, idfconfig, metric_functions,
                       metric_functions_names):

        self.corpus = Corpus()

        idfformat = Config.code_config(idfconfig)

        Config.preprocessing_method_functions["tfidf"] = TFidf(
            self.train, idfformat)

        for k, qs in self.train.items():

            qs_q = []
            # print(qs)
            for qtext in qs:
                qformat = {}

                qformat[idfformat] = process_chain(qtext, idfformat)

                qs_q.append((qtext, qformat))

            self.corpus.add(
                QA([Question(qtext, qformat) for qtext, qformat in qs_q],
                   Answer(k)))

        metrics = []
        i = 0
        for mf in metric_functions:
            metrics.append(
                Metric(idfformat, mf, name=metric_functions_names[i]))
            i += 1

        return self._evaluate(self.corpus.queryGroup, metrics)

    def evaluate(self, metrics, decide=None):
        return self._evaluate(self.corpus.query, metrics)

    def evaluateGroup(self, metrics):
        return self._evaluate(self.corpus.queryGroup, metrics)

    def _evaluate(self, query_func, metrics, decide=None):

        queries = []
        for ans_nr, qtext in self.dev.items():
            qformat = {}

            for m in metrics:

                qformat[m.format] = process_chain(qtext, m.format)

            queries.append((Query(question=Question(qtext, qformat),
                                  metrics=metrics,
                                  n=1), ans_nr))

        answ = []

        mscores = {}
        s = {}
        for m in metrics:
            mscores[m] = []
            s[m] = 0

        c = 0

        #print(len(queries))
        #print(len(self.corpus.qa_corpus))

        b = True
        for qq, ans in queries:
            rs = query_func(qq)

            #print(rs.rankings)

            if b:
                max = {}
                min = {}
                for m, hp in rs.rankings:
                    max[m] = 0
                    min[m] = 1
                b = False

            for m, hp in rs.rankings:
                mscores[m].append(hp[0].qa.ans.nr)

                if hp[0].qa.ans.nr == ans:
                    if hp[0].score <= 1:
                        s[m] += 1
                    #print(hp[0].score)
                    max[m] = max[m] if hp[0].score < max[m] else hp[0].score
                else:
                    min[m] = min[m] if hp[0].score > min[m] else hp[0].score
                #print("############")
                #print(hp[0].score)
                #print("query:" + qq.question.text)
                #print("processed" + str(qq.question.format[m.format]))
                #print("obtained: " + hp[0].q.text)
                #print("processed" + str(hp[0].q.format[m.format]))

            answ.append(ans)

        #for m in max.keys():
        #    print("max: " + str(max[m]) + " " + m.name)
        #    print("min: " + str(min[m]) + " " + m.name)
        #    print(s[m]/len(queries))
        return mscores, answ

    @staticmethod
    def code_config(p_dict):

        code = ""
        for pp in Config.preprocessing_methods:
            if pp in p_dict:
                if p_dict[pp]:
                    code += "1"
                else:
                    code += "0"
            else:
                code += "0"

        return code

    @staticmethod
    def decode_config(code):

        r_dict = {}
        for i in range(len(Config.preprocessing_methods)):
            if int(code[i]) == 1:
                r_dict[Config.preprocessing_methods[i]] = True

        return r_dict

    @staticmethod
    def loadCorpus(filename: str, configuration):

        corpus = Corpus()

        kb = extract(filename, validate=False)

        Config.preprocessing_method_functions["tfidf"] = TFidf(kb,
                                                               configuration,
                                                               runtime=True)

        for k, qa in kb.items():

            qs = qa[0]
            a = qa[1]

            questions = []

            for qtext in qs:
                qformat = {configuration: process_chain(qtext, configuration)}

                questions.append(Question(qtext, qformat))

            corpus.add(QA(questions, Answer(k, a)))

        return corpus