def spectral_clustering(x, scale, n_nbrs=None, affinity='full', W=None):
    '''
    Computes the eigenvectors of the graph Laplacian of x,
    using the full Gaussian affinity matrix (full), the
    symmetrized Gaussian affinity matrix with k nonzero
    affinities for each point (knn), or the Siamese affinity
    matrix (siamese)

    x:          input data
    n_nbrs:     number of neighbors used
    affinity:   the aforementeiond affinity mode

    returns:    the eigenvectors of the spectral clustering algorithm
    '''
    if affinity == 'full':
        W = K.eval(cf.full_affinity(K.variable(x), scale))
    elif affinity == 'knn':
        if n_nbrs is None:
            raise ValueError('n_nbrs must be provided if affinity = knn!')
        W = K.eval(cf.knn_affinity(K.variable(x), scale, n_nbrs))
    elif affinity == 'siamese':
        if W is None:
            print('no affinity matrix supplied')
            return
    d = np.sum(W, axis=1)
    D = np.diag(d)
    # (unnormalized) graph laplacian for spectral clustering
    L = D - W
    Lambda, V = np.linalg.eigh(L)
    return (Lambda, V)
Пример #2
0
def run_predict(params):
    K.set_learning_phase(0)
    input_shape = x.shape[1:]

    y_labeled_onehot = np.empty((0, params['n_clusters']))

    # spectralnet has three inputs -- they are defined here
    inputs = {
        'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'),
        'Labeled': Input(shape=input_shape, name='LabeledInput'),
        'Orthonorm': Input(shape=input_shape, name='OrthonormInput'),
    }
    y_true = tf.placeholder(tf.float32,
                            shape=(None, params['n_clusters']),
                            name='y_true')

    # Load Siamese network
    if params['affinity'] == 'siamese':
        siamese_input_shape = [params['n_clusters']]
        siamese_inputs = {
            'Unlabeled': Input(shape=siamese_input_shape,
                               name='UnlabeledInput'),
            'Labeled': Input(shape=siamese_input_shape, name='LabeledInput'),
        }
        siamese_net = networks.SiameseNet(siamese_inputs, params['arch'],
                                          params.get('siam_reg'), y_true,
                                          params['siamese_model_path'])

    else:
        siamese_net = None

    # Load Spectral net
    spectralnet_model_path = os.path.join(params['model_path'], 'spectral_net')
    spectral_net = networks.SpectralNet(inputs,
                                        params['arch'],
                                        params.get('spec_reg'),
                                        y_true,
                                        y_labeled_onehot,
                                        params['n_clusters'],
                                        params['affinity'],
                                        params['scale_nbr'],
                                        params['n_nbrs'],
                                        batch_sizes,
                                        spectralnet_model_path,
                                        siamese_net,
                                        train=False)
    # get final embeddings
    W_tensor = costs.knn_affinity(siamese_net.outputs['A'],
                                  params['n_nbrs'],
                                  scale=None,
                                  scale_nbr=params['scale_nbr'])

    x_spectralnet = spectral_net.predict_unlabelled(x)
    W = spectral_net.run_tensor(x, W_tensor)
    print('x_spectralnet', x_spectralnet.shape)
    clustering_algo = joblib.load(
        os.path.join(params['model_path'], 'spectral_net',
                     'clustering_aglo.sav'))

    kmeans_assignments = clustering_algo.predict_cluster_assignments(
        x_spectralnet)
    y_spectralnet = clustering_algo.predict(x_spectralnet)
    print_accuracy(kmeans_assignments, y, params['n_clusters'])
    # x_dec = decode_data(x, params, params['dset'])
    return x_spectralnet, y_spectralnet, x_spectralnet, W
Пример #3
0
def run_net(data, params):
    #
    # UNPACK DATA
    #

    x_train, y_train, x_val, y_val, x_test, y_test = data['spectral'][
        'train_and_test']
    x_train_unlabeled, y_train_unlabeled, x_train_labeled, y_train_labeled = data[
        'spectral']['train_unlabeled_and_labeled']
    x_val_unlabeled, y_val_unlabeled, x_val_labeled, y_val_labeled = data[
        'spectral']['val_unlabeled_and_labeled']

    if 'siamese' in params['affinity']:
        pairs_train, dist_train, pairs_val, dist_val = data['siamese'][
            'train_and_test']

    x = np.concatenate((x_train, x_val, x_test), axis=0)
    y = np.concatenate((y_train, y_val, y_test), axis=0)

    if len(x_train_labeled):
        y_train_labeled_onehot = OneHotEncoder().fit_transform(
            y_train_labeled.reshape(-1, 1)).toarray()
    else:
        y_train_labeled_onehot = np.empty((0, len(np.unique(y))))

    #
    # SET UP INPUTS
    #

    # create true y placeholder (not used in unsupervised training)
    y_true = tf.placeholder(tf.float32,
                            shape=(None, params['n_clusters']),
                            name='y_true')

    batch_sizes = {
        'Unlabeled': params['batch_size'],
        'Labeled': params['batch_size'],
        'Orthonorm': params.get('batch_size_orthonorm', params['batch_size']),
    }

    input_shape = x.shape[1:]

    # spectralnet has three inputs -- they are defined here
    inputs = {
        'Unlabeled': Input(shape=input_shape, name='UnlabeledInput'),
        'Labeled': Input(shape=input_shape, name='LabeledInput'),
        'Orthonorm': Input(shape=input_shape, name='OrthonormInput'),
    }

    #
    # DEFINE SIAMESE NET
    #

    # run only if we are using a siamese network
    if params['affinity'] == 'siamese':
        # set up the siamese network inputs as well
        siamese_inputs = {
            'A': inputs['Unlabeled'],
            'B': Input(shape=input_shape),
            'Labeled': inputs['Labeled'],
        }

        # generate layers
        layers = []
        layers += make_layer_list(params['arch'], 'siamese',
                                  params.get('siam_reg'))

        # create the siamese net
        siamese_outputs = stack_layers(siamese_inputs, layers)

        # add the distance layer
        distance = Lambda(costs.euclidean_distance,
                          output_shape=costs.eucl_dist_output_shape)(
                              [siamese_outputs['A'], siamese_outputs['B']])

        #create the distance model for training
        siamese_net_distance = Model(
            [siamese_inputs['A'], siamese_inputs['B']], distance)

        #
        # TRAIN SIAMESE NET
        #

        # compile the siamese network
        siamese_net_distance.compile(loss=costs.contrastive_loss,
                                     optimizer=RMSprop())

        # create handler for early stopping and learning rate scheduling
        siam_lh = LearningHandler(lr=params['siam_lr'],
                                  drop=params['siam_drop'],
                                  lr_tensor=siamese_net_distance.optimizer.lr,
                                  patience=params['siam_patience'])

        # initialize the training generator
        train_gen_ = train_gen(pairs_train, dist_train,
                               params['siam_batch_size'])

        # format the validation data for keras
        validation_data = ([pairs_val[:, 0], pairs_val[:, 1]], dist_val)

        # compute the steps per epoch
        steps_per_epoch = int(len(pairs_train) / params['siam_batch_size'])

        # train the network
        hist = siamese_net_distance.fit_generator(
            train_gen_,
            epochs=params['siam_ne'],
            validation_data=validation_data,
            steps_per_epoch=steps_per_epoch,
            callbacks=[siam_lh])

        # compute the siamese embeddings of the input data
        all_siam_preds = train.predict(siamese_outputs['A'],
                                       x_unlabeled=x_train,
                                       inputs=inputs,
                                       y_true=y_true,
                                       batch_sizes=batch_sizes)

    #
    # DEFINE SPECTRALNET
    #

    # generate layers
    layers = []
    layers = make_layer_list(params['arch'][:-1], 'spectral',
                             params.get('spec_reg'))
    layers += [{
        'type': 'tanh',
        'size': params['n_clusters'],
        'l2_reg': params.get('spec_reg'),
        'name': 'spectral_{}'.format(len(params['arch']) - 1)
    }, {
        'type': 'Orthonorm',
        'name': 'orthonorm'
    }]

    # create spectralnet
    outputs = stack_layers(inputs, layers)
    spectral_net = Model(inputs=inputs['Unlabeled'],
                         outputs=outputs['Unlabeled'])

    #
    # DEFINE SPECTRALNET LOSS
    #

    # generate affinity matrix W according to params
    if params['affinity'] == 'siamese':
        input_affinity = tf.concat(
            [siamese_outputs['A'], siamese_outputs['Labeled']], axis=0)
        x_affinity = all_siam_preds
    elif params['affinity'] in ['knn', 'full']:
        input_affinity = tf.concat([inputs['Unlabeled'], inputs['Labeled']],
                                   axis=0)
        x_affinity = x_train

    # calculate scale for affinity matrix
    scale = get_scale(x_affinity, batch_sizes['Unlabeled'],
                      params['scale_nbr'])

    # create affinity matrix
    if params['affinity'] == 'full':
        W = costs.full_affinity(input_affinity, scale=scale)
    elif params['affinity'] in ['knn', 'siamese']:
        W = costs.knn_affinity(input_affinity,
                               params['n_nbrs'],
                               scale=scale,
                               scale_nbr=params['scale_nbr'])

    # if we have labels, use them
    if len(x_train_labeled):
        # get true affinities (from labeled data)
        W_true = tf.cast(tf.equal(costs.squared_distance(y_true), 0),
                         dtype='float32')

        # replace lower right corner of W with W_true
        unlabeled_end = tf.shape(inputs['Unlabeled'])[0]
        W_u = W[:unlabeled_end, :]  # upper half
        W_ll = W[unlabeled_end:, :unlabeled_end]  # lower left
        W_l = tf.concat((W_ll, W_true), axis=1)  # lower half
        W = tf.concat((W_u, W_l), axis=0)

        # create pairwise batch distance matrix Dy
        Dy = costs.squared_distance(
            tf.concat([outputs['Unlabeled'], outputs['Labeled']], axis=0))
    else:
        Dy = costs.squared_distance(outputs['Unlabeled'])

    # define loss
    spectral_net_loss = K.sum(W * Dy) / (2 * params['batch_size'])

    # create the train step update
    learning_rate = tf.Variable(0., name='spectral_net_learning_rate')
    train_step = tf.train.RMSPropOptimizer(
        learning_rate=learning_rate).minimize(
            spectral_net_loss, var_list=spectral_net.trainable_weights)

    #
    # TRAIN SPECTRALNET
    #

    # initialize spectralnet variables
    K.get_session().run(
        tf.variables_initializer(spectral_net.trainable_weights))

    # set up validation/test set inputs
    inputs_test = {
        'Unlabeled': inputs['Unlabeled'],
        'Orthonorm': inputs['Orthonorm']
    }

    # create handler for early stopping and learning rate scheduling
    spec_lh = LearningHandler(lr=params['spec_lr'],
                              drop=params['spec_drop'],
                              lr_tensor=learning_rate,
                              patience=params['spec_patience'])

    # begin spectralnet training loop
    spec_lh.on_train_begin()
    for i in range(params['spec_ne']):
        # train spectralnet
        loss = train.train_step(return_var=[spectral_net_loss],
                                updates=spectral_net.updates + [train_step],
                                x_unlabeled=x_train_unlabeled,
                                inputs=inputs,
                                y_true=y_true,
                                batch_sizes=batch_sizes,
                                x_labeled=x_train_labeled,
                                y_labeled=y_train_labeled_onehot,
                                batches_per_epoch=100)[0]

        # get validation loss
        val_loss = train.predict_sum(spectral_net_loss,
                                     x_unlabeled=x_val_unlabeled,
                                     inputs=inputs,
                                     y_true=y_true,
                                     x_labeled=x[0:0],
                                     y_labeled=y_train_labeled_onehot,
                                     batch_sizes=batch_sizes)

        # do early stopping if necessary
        if spec_lh.on_epoch_end(i, val_loss):
            print('STOPPING EARLY')
            break

        # print training status
        print("Epoch: {}, loss={:2f}, val_loss={:2f}".format(
            i, loss, val_loss))

    print("finished training")

    #
    # EVALUATE
    #

    # get final embeddings
    x_spectralnet = train.predict(outputs['Unlabeled'],
                                  x_unlabeled=x,
                                  inputs=inputs_test,
                                  y_true=y_true,
                                  x_labeled=x_train_labeled[0:0],
                                  y_labeled=y_train_labeled_onehot[0:0],
                                  batch_sizes=batch_sizes)

    # get accuracy and nmi
    kmeans_assignments, km = get_cluster_sols(x_spectralnet,
                                              ClusterClass=KMeans,
                                              n_clusters=params['n_clusters'],
                                              init_args={'n_init': 10})
    y_spectralnet, _ = get_y_preds(kmeans_assignments, y, params['n_clusters'])
    print_accuracy(kmeans_assignments, y, params['n_clusters'])
    from sklearn.metrics import normalized_mutual_info_score as nmi
    nmi_score = nmi(kmeans_assignments, y)
    print('NMI: ' + str(np.round(nmi_score, 3)))

    if params['generalization_metrics']:
        x_spectralnet_train = train.predict(
            outputs['Unlabeled'],
            x_unlabeled=x_train_unlabeled,
            inputs=inputs_test,
            y_true=y_true,
            x_labeled=x_train_labeled[0:0],
            y_labeled=y_train_labeled_onehot[0:0],
            batch_sizes=batch_sizes)
        x_spectralnet_test = train.predict(
            outputs['Unlabeled'],
            x_unlabeled=x_test,
            inputs=inputs_test,
            y_true=y_true,
            x_labeled=x_train_labeled[0:0],
            y_labeled=y_train_labeled_onehot[0:0],
            batch_sizes=batch_sizes)
        km_train = KMeans(
            n_clusters=params['n_clusters']).fit(x_spectralnet_train)
        from scipy.spatial.distance import cdist
        dist_mat = cdist(x_spectralnet_test, km_train.cluster_centers_)
        closest_cluster = np.argmin(dist_mat, axis=1)
        print_accuracy(closest_cluster, y_test, params['n_clusters'],
                       ' generalization')
        nmi_score = nmi(closest_cluster, y_test)
        print('generalization NMI: ' + str(np.round(nmi_score, 3)))

    return x_spectralnet, y_spectralnet