Пример #1
0
allTokens = []
weakTokens = []
tokenDatabase = []
insecureForms = []

print(' %s Phase: Crawling %s[%s1/6%s]%s' %
      (lightning, green, end, green, end))
dataset = photon(target, headers, level, threadCount)
allForms = dataset[0]
print('\r%s Crawled %i URL(s) and found %i form(s).%-10s' %
      (info, dataset[1], len(allForms), ' '))
print(' %s Phase: Evaluating %s[%s2/6%s]%s' %
      (lightning, green, end, green, end))

evaluate(allForms, weakTokens, tokenDatabase, allTokens, insecureForms)

if weakTokens:
    print('%s Weak token(s) found' % good)
    for weakToken in weakTokens:
        url = list(weakToken.keys())[0]
        token = list(weakToken.values())[0]
        print('%s %s %s' % (info, url, token))

if insecureForms:
    print('%s Insecure form(s) found' % good)
    for insecureForm in insecureForms:
        url = list(insecureForm.keys())[0]
        action = list(insecureForm.values())[0]['action']
        form = action.replace(target, '')
        if form:
Пример #2
0
def solve_problem(image, features, topic):
    """
  ------------------------------------------------------------
  STEP 2. Predict the Feature
  1. Crop the features as collection of images
  2. Feed feature images to the model
  3. Get predicted value for each feature
  ------------------------------------------------------------
  """
    # Get all features as an image
    feature_col = get_features_as_img(image, features)
    feature_col = np.array(feature_col)

    # Formatting the input
    feature_col = feature_col.reshape(feature_col.shape + (1, ))
    feature_col = feature_col.astype(np.float32)
    input_shape = list(feature_col.shape)

    # Load the TFLite model and allocate tensors
    interpreter = tf.lite.Interpreter(model_path="core/model/" +
                                      MODEL_ARCHITECTURE)
    interpreter.resize_tensor_input(0, input_shape, strict=True)
    interpreter.allocate_tensors()

    # Get input and output tensors
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    # Feed the data into the model
    interpreter.set_tensor(input_details[0]['index'], feature_col)
    interpreter.invoke()

    # Get predicted value
    features_prob = interpreter.get_tensor(output_details[0]['index'])
    features_pred = []
    for index in range(len(feature_col)):
        predicted_feat = np.argmax(features_prob[index])
        features_pred.append(predicted_feat)

    # Assign the predicted value to each component
    for index in range(len(features)):
        features[index]["symbol_id"] = features_pred[index].item()
        features[index]["symbol"] = math_symbol[features_pred[index]]["symbol"]

    # Display predicted features from model in terminal
    if DISPLAY_PREDICTED_FEATURES:
        print("--------------------------------------------------------------")
        print("Predicted Features :")
        print(features_pred)
        print("--------------------------------------------------------------")
    """
  ------------------------------------------------------------
  STEP 3. Turn Features Into Mathematical Terms
  1. Get the position order of each features
  2. Turn those features into mathematical terms
  ------------------------------------------------------------
  """
    # Get position order for each feature
    features = arrange_position(features)

    # Turn features into mathematical terms
    terms = get_math_terms(features, topic)
    display_terms = terms.copy()
    """
  ------------------------------------------------------------
  STEP 4. Evaluate the Problem
  ------------------------------------------------------------
  """
    # Choose the topic and evaluate the problem
    result = evaluate(terms, topic)
    """
  ------------------------------------------------------------
  STEP 5. Display the Question and Answer
  ------------------------------------------------------------
  """
    # Display the question and answer
    qna_dict = display_qna(display_terms, result, topic)
    return qna_dict