def forward(self, inp): if self.is_hd: x = tf.concat([ nn.tf_flatten(self.down1(inp)), nn.tf_flatten(self.down2(inp)), nn.tf_flatten(self.down3(inp)), nn.tf_flatten(self.down4(inp)) ], -1 ) else: x = nn.tf_flatten(self.down1(inp)) return x
def forward(self, inp): return nn.tf_flatten(self.down1(inp))