else: tolerate = tolerate+1 if tolerate==limit: model.load() test_mse = wrapper_test(model) print('the best valid mse is:',str(best_mse)) print('the test mse is ',str(test_mse)) break # if os.path.exists(args.save_dir): # shutil.rmtree(args.save_dir) # os.makedirs(args.save_dir) # # if os.path.exists(args.gen_frm_dir): # shutil.rmtree(args.gen_frm_dir) # os.makedirs(args.gen_frm_dir) # gpu_list = np.asarray(os.environ.get('CUDA_VISIBLE_DEVICES', '-1').split(','), dtype=np.int32) args.n_gpu = len(gpu_list) print('Initializing models') model = Model(args) model.load() # test_mse = wrapper_test(model) # print('test mse is:',str(test_mse)) # if args.is_training: # wrapper_train(model) # else: # wrapper_test(model)
def test_wrapper(model): model.load(args.pretrained_model) test_input_handle = datasets_factory.data_provider( args.dataset_name, args.train_data_paths, args.valid_data_paths, args.batch_size, args.img_width, seq_length=args.total_length, is_training=False, ) trainer.test(model, test_input_handle, args, "test_result") # if os.path.exists(args.save_dir): # shutil.rmtree(args.save_dir) # os.makedirs(args.save_dir) # if os.path.exists(args.gen_frm_dir): # shutil.rmtree(args.gen_frm_dir) # os.makedirs(args.gen_frm_dir) print("Initializing models") model = Model(args) if args.is_training: train_wrapper(model) else: test_wrapper(model)