Пример #1
0
def train_onet(model_store_path,
               end_epoch,
               imdb,
               batch_size,
               frequent=50,
               base_lr=0.01,
               use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = ONet(is_train=True)
    net.train()
    if use_cuda:
        net.cuda()

    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data = TrainImageReader(imdb, 48, batch_size, shuffle=True)

    for cur_epoch in range(1, end_epoch + 1):
        train_data.reset()
        accuracy_list = []
        cls_loss_list = []
        bbox_loss_list = []
        landmark_loss_list = []

        for batch_idx, (image, (gt_label, gt_bbox,
                                gt_landmark)) in enumerate(train_data):

            im_tensor = [
                image_tools.convert_image_to_tensor(image[i, :, :, :])
                for i in range(image.shape[0])
            ]
            im_tensor = torch.stack(im_tensor)

            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred, landmark_offset_pred = net(im_tensor)
            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label, cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label, gt_bbox,
                                              box_offset_pred)
            landmark_loss = lossfn.landmark_loss(gt_label, gt_landmark,
                                                 landmark_offset_pred)

            all_loss = cls_loss * 0.8 + box_offset_loss * 0.6 + landmark_loss * 1.5

            if batch_idx % frequent == 0:
                accuracy = compute_accuracy(cls_pred, gt_label)

                show1 = accuracy.data.tolist()[0]
                show2 = cls_loss.data.tolist()[0]
                show3 = box_offset_loss.data.tolist()[0]
                show4 = landmark_loss.data.tolist()[0]
                show5 = all_loss.data.tolist()[0]

                print "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, landmark loss: %s, all_loss: %s, lr:%s " % (
                    datetime.datetime.now(), cur_epoch, batch_idx, show1,
                    show2, show3, show4, show5, base_lr)
                accuracy_list.append(accuracy)
                cls_loss_list.append(cls_loss)
                bbox_loss_list.append(box_offset_loss)
                landmark_loss_list.append(landmark_loss)

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        accuracy_avg = torch.mean(torch.cat(accuracy_list))
        cls_loss_avg = torch.mean(torch.cat(cls_loss_list))
        bbox_loss_avg = torch.mean(torch.cat(bbox_loss_list))
        landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list))

        show6 = accuracy_avg.data.tolist()[0]
        show7 = cls_loss_avg.data.tolist()[0]
        show8 = bbox_loss_avg.data.tolist()[0]
        show9 = landmark_loss_avg.data.tolist()[0]

        print "Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s, landmark loss: %s " % (
            cur_epoch, show6, show7, show8, show9)
        torch.save(
            net.state_dict(),
            os.path.join(model_store_path, "onet_epoch_%d.pt" % cur_epoch))
        torch.save(
            net,
            os.path.join(model_store_path,
                         "onet_epoch_model_%d.pkl" % cur_epoch))
Пример #2
0
def train_pnet(model_store_path,
               end_epoch,
               imdb,
               batch_size,
               frequent=10,
               base_lr=0.01,
               use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = PNet(is_train=True, use_cuda=use_cuda)
    net.train()

    if use_cuda:
        net.cuda()
    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data = TrainImageReader(imdb, 12, batch_size, shuffle=True)

    frequent = 10
    for cur_epoch in range(1, end_epoch + 1):
        train_data.reset()  # shuffle

        for batch_idx, (image, (gt_label, gt_bbox,
                                gt_landmark)) in enumerate(train_data):

            im_tensor = [
                image_tools.convert_image_to_tensor(image[i, :, :, :])
                for i in range(image.shape[0])
            ]
            im_tensor = torch.stack(im_tensor)
            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            # gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                # gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred = net(im_tensor)

            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label, cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label, gt_bbox,
                                              box_offset_pred)
            # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)

            all_loss = cls_loss * 1.0 + box_offset_loss * 0.5

            if batch_idx % frequent == 0:
                accuracy = compute_accuracy(cls_pred, gt_label)

                show1 = accuracy.data.cpu().numpy()
                show2 = cls_loss.data.cpu().numpy()
                show3 = box_offset_loss.data.cpu().numpy()
                # show4 = landmark_loss.data.cpu().numpy()
                show5 = all_loss.data.cpu().numpy()

                print(
                    "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "
                    % (datetime.datetime.now(), cur_epoch, batch_idx, show1,
                       show2, show3, show5, base_lr))

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        torch.save(
            net.state_dict(),
            os.path.join(model_store_path, "pnet_epoch_%d.pt" % cur_epoch))
        torch.save(
            net,
            os.path.join(model_store_path,
                         "pnet_epoch_model_%d.pkl" % cur_epoch))
Пример #3
0
    def train_pnet(self, train_data_path):
        device = torch.device('cuda')
        lossfn = LossFn()
        net = PNet()
        # 返回 一样的 net = net.to(device)
        net.to(device)
        # 切换到train 状态  net.eval() 测试状态
        net.train()
        # print(net)
        optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

        self.viz.line(Y=torch.FloatTensor([0.]),
                      X=torch.FloatTensor([0.]),
                      win='pnet_train_loss',
                      opts=dict(title='train loss'))

        # 加载数据 ratios : pos:part:neg:landmark
        trian_datasets = DataReader(train_data_path,
                                    im_size=12,
                                    transform=self.trainTransform,
                                    batch_size=4096,
                                    ratios=(2, 1, 1, 2))

        for epoch in range(1):
            print("epoch:", epoch)
            for step, (imgs, cls_labels, rois,
                       landmarks) in enumerate(trian_datasets):

                # [b, 3, 12, 12],[b],[4],[10]
                im_tensor = imgs.to(device)
                cls_labels = cls_labels.to(device)
                rois = rois.to(device)
                landmarks = landmarks.to(device)

                cls_pred, box_offset_pred, landmarks_pred = net(im_tensor)

                # 貌似这里打印最后一个的loss,对于整体来说不怎么准确
                cls_loss = lossfn.cls_loss(cls_labels, cls_pred)
                box_offset_loss = lossfn.box_loss(cls_labels, rois,
                                                  box_offset_pred)
                landmark_loss = lossfn.landmark_loss(cls_labels, landmarks,
                                                     landmarks_pred)

                print("cls_loss:", cls_loss)
                print("box_offset_loss:", box_offset_loss)
                print("landmark_loss:", landmark_loss)

                all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 + landmark_loss * 0.5

                self.viz.line(Y=torch.FloatTensor([all_loss]),
                              X=torch.FloatTensor([step]),
                              win='pnet_train_loss',
                              update='append')

                optimizer.zero_grad()
                all_loss.backward()
                optimizer.step()
                print("all_loss:", all_loss)
                print("-" * 40, "step:", step, "-" * 40)

                if step % 1000 == 0:
                    accuracy = compute_accuracy(cls_pred, cls_labels)
                    recoll = compute_recoll(cls_pred, cls_labels)
                    print(
                        "=" * 80, "\n\n=> acc:{}\n=> recoll:{}\n\n".format(
                            accuracy, recoll), "=" * 80)

                if step % 1000 == 0:
                    torch.save(
                        net.state_dict(),
                        os.path.join("../data/models/",
                                     "pnet_epoch_%d.pt" % epoch))
                    torch.save(
                        net,
                        os.path.join("../data/models/",
                                     "pnet_epoch_model_%d.pkl" % epoch))
                    epoch += 1