Пример #1
0
    def __init__(self, in_channels=3, withSkipConnections=True):
        """
        :param in_channels:
        :param pretrained:
        :param withSkipConnections:
        """
        super().__init__()

        self.in_channels = in_channels
        self.withSkipConnections = withSkipConnections

        self.down1 = segnetDown2(self.in_channels,
                                 64,
                                 withFeatureMap=self.withSkipConnections)
        self.down2 = segnetDown2(64,
                                 128,
                                 withFeatureMap=self.withSkipConnections)
        self.down3 = segnetDown3(128,
                                 256,
                                 withFeatureMap=self.withSkipConnections)
        self.down4 = segnetDown3(256,
                                 512,
                                 withFeatureMap=self.withSkipConnections)
        self.down5 = segnetDown3(512,
                                 512,
                                 withFeatureMap=self.withSkipConnections)
Пример #2
0
    def __init__(self,
                 n_classes=21,
                 in_channels=3,
                 is_unpooling=True,
                 pretrained=True,
                 withSkipConnections=False,
                 enablePermEq=True):
        super().__init__()

        self.in_channels = in_channels
        self.is_unpooling = is_unpooling
        self.withSkipConnections = withSkipConnections
        self.enablePermEq = enablePermEq

        self.down1 = segnetDown2(self.in_channels,
                                 64,
                                 withFeatureMap=self.withSkipConnections)
        self.down2 = segnetDown2(64,
                                 128,
                                 withFeatureMap=self.withSkipConnections)
        self.down3 = segnetDown3(128,
                                 256,
                                 withFeatureMap=self.withSkipConnections)
        self.down4 = segnetDown3(256,
                                 512,
                                 withFeatureMap=self.withSkipConnections)
        self.down5 = segnetDown3(512,
                                 512,
                                 withFeatureMap=self.withSkipConnections)

        self.up5 = segnetUp3(512,
                             512,
                             withSkipConnections=self.withSkipConnections)
        self.up4 = segnetUp3(512,
                             256,
                             withSkipConnections=self.withSkipConnections)
        self.up3 = segnetUp3(256,
                             128,
                             withSkipConnections=self.withSkipConnections)
        self.up2 = segnetUp2(128,
                             64,
                             withSkipConnections=self.withSkipConnections)
        self.up1 = segnetUp2(64,
                             n_classes,
                             withSkipConnections=self.withSkipConnections)

        if pretrained:
            vgg16 = models.vgg16(pretrained=True)
            Arch = 'SetSegNet'
            if self.withSkipConnections:
                Arch = 'SetSegNetSkip'
            print(
                '[ INFO ]: Using pre-trained weights from VGG16 with {}. Permutation equivariant layers are {}.'
                .format(Arch, 'ENABLED' if self.enablePermEq else 'DISABLED'))
            self.init_vgg16_params(vgg16)
Пример #3
0
    def __init__(self,
                 out_channels=8,
                 in_channels=3,
                 pretrained=True,
                 withSkipConnections=True):
        super().__init__()

        self.in_channels = in_channels
        self.withSkipConnections = withSkipConnections

        self.down1 = segnetDown2(self.in_channels,
                                 64,
                                 withFeatureMap=self.withSkipConnections)
        self.down2 = segnetDown2(64,
                                 128,
                                 withFeatureMap=self.withSkipConnections)
        self.down3 = segnetDown3(128,
                                 256,
                                 withFeatureMap=self.withSkipConnections)
        self.down4 = segnetDown3(256,
                                 512,
                                 withFeatureMap=self.withSkipConnections)
        self.down5 = segnetDown3(512,
                                 512,
                                 withFeatureMap=self.withSkipConnections)

        self.up5 = segnetUp3(512,
                             512,
                             withSkipConnections=self.withSkipConnections)
        self.up4 = segnetUp3(512,
                             256,
                             withSkipConnections=self.withSkipConnections)
        self.up3 = segnetUp3(256,
                             128,
                             withSkipConnections=self.withSkipConnections)
        self.up2 = segnetUp2(128,
                             64,
                             withSkipConnections=self.withSkipConnections)
        self.up1 = segnetUp2(64,
                             out_channels,
                             withSkipConnections=self.withSkipConnections)

        if pretrained:
            vgg16 = models.vgg16(pretrained=True)
            Arch = 'SegNet'
            if self.withSkipConnections:
                Arch = 'SegNetSkip'
            print('[ INFO ]: Using pre-trained weights from VGG16 with {}.'.
                  format(Arch))
            self.init_vgg16_params(vgg16)
Пример #4
0
    def __init__(self,
                 out_channels=8,
                 in_channels=3,
                 pretrained=True,
                 withSkipConnections=True,
                 new_version=False,
                 additional=None):
        """
        :param out_channels:
        :param in_channels:
        :param pretrained:
        :param withSkipConnections:
        :param new_version:
        :param additional: all additional output layer are new version
        """
        super().__init__()

        self.in_channels = in_channels
        self.withSkipConnections = withSkipConnections

        self.down1 = segnetDown2(self.in_channels,
                                 64,
                                 withFeatureMap=self.withSkipConnections)
        self.down2 = segnetDown2(64,
                                 128,
                                 withFeatureMap=self.withSkipConnections)
        self.down3 = segnetDown3(128,
                                 256,
                                 withFeatureMap=self.withSkipConnections)
        self.down4 = segnetDown3(256,
                                 512,
                                 withFeatureMap=self.withSkipConnections)
        self.down5 = segnetDown3(512,
                                 512,
                                 withFeatureMap=self.withSkipConnections)

        self.up5 = segnetUp3(512,
                             512,
                             withSkipConnections=self.withSkipConnections)
        self.up4 = segnetUp3(512,
                             256,
                             withSkipConnections=self.withSkipConnections)
        self.up3 = segnetUp3(256,
                             128,
                             withSkipConnections=self.withSkipConnections)
        self.up2 = segnetUp2(128,
                             64,
                             withSkipConnections=self.withSkipConnections)
        self.up1 = segnetUp2(64,
                             out_channels,
                             last_layer=True if new_version else False,
                             withSkipConnections=self.withSkipConnections)
        if additional is not None:
            self.additional_last_layer = segnetUp2(
                64,
                additional,
                last_layer=True,
                withSkipConnections=self.withSkipConnections)
            self.additional = True
        else:
            self.additional = False

        if pretrained:
            vgg16 = models.vgg16(pretrained=True)
            Arch = 'SegNet'
            if self.withSkipConnections:
                Arch = 'SegNetSkip'
            print('[ INFO ]: Using pre-trained weights from VGG16 with {}.'.
                  format(Arch))
            self.init_vgg16_params(vgg16)