def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) if args.model_type == "cnn": train_x = train_x.reshape((-1, 28, 28, 1)) test_x = test_x.reshape((-1, 28, 28, 1)) if args.model_type == "cnn": net = Net([ Conv2D(kernel=[5, 5, 1, 8], stride=[2, 2], padding="SAME"), ReLU(), Conv2D(kernel=[5, 5, 8, 16], stride=[2, 2], padding="SAME"), ReLU(), Conv2D(kernel=[5, 5, 16, 32], stride=[2, 2], padding="SAME"), ReLU(), Flatten(), Dense(10) ]) elif args.model_type == "dense": net = Net([ Dense(200), ReLU(), Dense(100), ReLU(), Dense(70), ReLU(), Dense(30), ReLU(), Dense(10) ]) else: raise ValueError( "Invalid argument model_type! Must be 'cnn' or 'dense'") model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start)) # evaluate model.set_phase("TEST") test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = np.asarray(test_y) res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set # train_y = get_one_hot(train_y, 2) net = Net([Dense(100), ReLU(), Dense(30), ReLU(), Dense(1)]) model = Model(net=net, loss=SigmoidCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start)) for timer in model.timers.values(): timer.report() # evaluate model.set_phase("TEST") test_y_idx = np.asarray(test_y).reshape(-1) test_pred = model.forward(test_x) test_pred[test_pred > 0] = 1 test_pred[test_pred <= 0] = 0 test_pred_idx = test_pred.reshape(-1) res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def main(args): if args.seed >= 0: random_seed(args.seed) train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) train_x = Tensor(train_x) train_y = Tensor(train_y) test_x = Tensor(test_x) test_y = Tensor(test_y) net = Net([ Dense(200), ReLU(), Dense(100), ReLU(), Dense(70), ReLU(), Dense(30), ReLU(), Dense(10) ]) model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) loss_layer = SoftmaxCrossEntropyLoss() iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): model.zero_grad() pred = model.forward(batch.inputs) loss = loss_layer.loss(pred, batch.targets) loss.backward() model.step() loss_list.append(loss.values) print("Epoch %d tim cost: %.4f" % (epoch, time.time() - t_start)) # evaluate model.set_phase("TEST") test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = test_y.values res = evaluator.evaluate(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def activation_maximazation(model, init_grads, layer_idx, fig): # create a random image according to MNIST statistics img_mean = 0.456 img_std = 0.224 img = np.random.normal(img_mean, img_std, (1, 28, 28, 1)) disp_mnist_batch(img, fig) # create optimizer opt = Adam(lr=1e-2) sigma = 0.30 for iteration in range(500 + 1): # forward pass until interested layer outputs = img for layer in model.net.layers[0:layer_idx + 1]: outputs = layer.forward(outputs) # backward from interested layer grads = init_grads for layer in model.net.layers[0:layer_idx + 1][::-1]: grads = layer.backward(grads) # flatten the gradients and apply steps flat_grads = np.ravel(grads) flat_steps = opt._compute_step(flat_grads) steps = flat_steps.reshape(img.shape) img += steps # blur image to regularize this progress img = gaussian_filter(img, sigma, order=0) # ensure image is still in [0, 1] range mean, max_, min_ = img.mean(), img.max(), img.min() img = (img - min_) / (max_ - min_) if iteration % 100 == 0: cells_idx = (-init_grads).astype(int).astype(bool) loss = -outputs[cells_idx].sum() stats = img.mean(), img.std(), img.min(), img.max() print('Iteration#%d, loss: %.3f' % (iteration, loss), end=" ") print('image: u=%.3f, std=%.3f, range=(%.3f, %.3f)' % stats) disp_mnist_batch(img, fig) return img
def main(args): if args.seed >= 0: random_seed(args.seed) # create output directory for saving result images if not os.path.exists('./output'): os.mkdir('./output') # define network we are going to load net = Net([ Conv2D(kernel=[5, 5, 1, 6], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Conv2D(kernel=[5, 5, 6, 16], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Flatten(), Dense(120), ReLU(), Dense(84), ReLU(), Dense(10) ]) # load the model model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam()) print('loading pre-trained model file', args.model_path) model.load(args.model_path) # create pyplot window for on-the-fly visualization img = np.ones((1, 28, 28, 1)) fig = disp_mnist_batch(img) # actual visualization generations layer_name = 'conv-layer-1' print('[ ' + layer_name + ' ]') images = am_visualize_conv_layer(model, 0, fig) save_batch_as_images('output/{}.png'.format(layer_name), images, title='visualized feature maps for ' + layer_name) layer_name = 'conv-layer-2' print('[ ' + layer_name + ' ]') images = am_visualize_conv_layer(model, 3, fig) save_batch_as_images('output/{}.png'.format(layer_name), images, title='visualized feature maps for ' + layer_name)
def main(args): if args.seed >= 0: random_seed(args.seed) # data preparing data_path = os.path.join(args.data_dir, args.file_name) train_x, train_y, img_shape = prepare_dataset(data_path) net = Net([ Dense(30), ReLU(), Dense(60), ReLU(), Dense(60), ReLU(), Dense(30), ReLU(), Dense(3), Sigmoid() ]) model = Model(net=net, loss=MSELoss(), optimizer=Adam()) mse_evaluator = MSEEvaluator() iterator = BatchIterator(batch_size=args.batch_size) for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): preds = model.forward(batch.inputs) loss, grads = model.backward(preds, batch.targets) model.apply_grad(grads) # evaluate preds = net.forward(train_x) mse = mse_evaluator.evaluate(preds, train_y) print(mse) if args.paint: # generate painting preds = preds.reshape(img_shape[0], img_shape[1], -1) preds = (preds * 255.0).astype("uint8") filename, ext = os.path.splitext(args.file_name) output_filename = "output" + ext output_path = os.path.join(args.data_dir, output_filename) Image.fromarray(preds).save(output_path) print("Epoch %d time cost: %.2f" % (epoch, time.time() - t_start))
def main(args): if args.seed >= 0: random_seed(args.seed) # data preparing train_x, train_y, img_shape = prepare_dataset(args.img) net = Net([ Dense(30), ReLU(), Dense(100), ReLU(), Dense(100), ReLU(), Dense(30), ReLU(), Dense(3), Sigmoid() ]) model = Model(net=net, loss=MSE(), optimizer=Adam()) iterator = BatchIterator(batch_size=args.batch_size) for epoch in range(args.num_ep): for batch in iterator(train_x, train_y): preds = model.forward(batch.inputs) loss, grads = model.backward(preds, batch.targets) model.apply_grad(grads) # evaluate preds = net.forward(train_x) mse = mean_square_error(preds, train_y) print("Epoch %d %s" % (epoch, mse)) # generate painting if epoch % 5 == 0: preds = preds.reshape(img_shape[0], img_shape[1], -1) preds = (preds * 255.0).astype("uint8") name, ext = os.path.splitext(args.img) filename = os.path.basename(name) out_filename = filename + "-paint-epoch" + str(epoch) + ext if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) out_path = os.path.join(args.output_dir, out_filename) Image.fromarray(preds).save(out_path) print("save painting to %s" % out_path)
def main(args): train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) net = Net([ Dense(784, 200), ReLU(), Dense(200, 100), ReLU(), Dense(100, 70), ReLU(), Dense(70, 30), ReLU(), Dense(30, 10) ]) model = Model(net=net, loss=SoftmaxCrossEntropyLoss(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) evaluator = AccEvaluator() loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) t_end = time.time() # evaluate test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = np.asarray(test_y) res = evaluator.evaluate(test_pred_idx, test_y_idx) print("Epoch %d time cost: %.4f\t %s" % (epoch, t_end - t_start, res))
def main(args): if args.seed >= 0: random_seed(args.seed) train_set, valid_set, test_set = mnist(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set train_y = get_one_hot(train_y, 10) if args.model_type == "cnn": train_x = train_x.reshape((-1, 28, 28, 1)) test_x = test_x.reshape((-1, 28, 28, 1)) if args.model_type == "cnn": # a LeNet-5 model with activation function changed to ReLU net = Net([ Conv2D(kernel=[5, 5, 1, 6], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Conv2D(kernel=[5, 5, 6, 16], stride=[1, 1], padding="SAME"), ReLU(), MaxPool2D(pool_size=[2, 2], stride=[2, 2]), Flatten(), Dense(120), ReLU(), Dense(84), ReLU(), Dense(10) ]) elif args.model_type == "dense": net = Net([ Dense(200), ReLU(), Dense(100), ReLU(), Dense(70), ReLU(), Dense(30), ReLU(), Dense(10) ]) else: raise ValueError("Invalid argument: model_type") model = Model(net=net, loss=SoftmaxCrossEntropy(), optimizer=Adam(lr=args.lr)) iterator = BatchIterator(batch_size=args.batch_size) loss_list = list() for epoch in range(args.num_ep): t_start = time.time() for batch in iterator(train_x, train_y): pred = model.forward(batch.inputs) loss, grads = model.backward(pred, batch.targets) model.apply_grad(grads) loss_list.append(loss) print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start)) # evaluate model.set_phase("TEST") test_pred = model.forward(test_x) test_pred_idx = np.argmax(test_pred, axis=1) test_y_idx = np.asarray(test_y) res = accuracy(test_pred_idx, test_y_idx) print(res) model.set_phase("TRAIN")
def train(args): # prepare dataset train_, valid, test = mnist(args.data_dir) X = np.concatenate([train_[0], valid[0], test[0]]) y = np.concatenate([train_[1], valid[1], test[1]]) fix_noise = get_noise(size=(args.batch_size, args.nz)) loss = SigmoidCrossEntropy() # TODO: replace mlp with cnn G = Model(net=mlp_G(), loss=loss, optimizer=Adam(args.lr_g, beta1=args.beta1)) D = Model(net=mlp_D(), loss=loss, optimizer=Adam(args.lr_d, beta1=args.beta1)) running_g_err, running_d_err = 0, 0 iterator = BatchIterator(batch_size=args.batch_size) for epoch in range(args.num_ep): for i, batch in enumerate(iterator(X, y)): # --- Train Discriminator --- # feed with real data (maximize log(D(x))) d_pred_real = D.forward(batch.inputs) label_real = np.ones_like(d_pred_real) d_real_err, d_real_grad = D.backward(d_pred_real, label_real) # feed with fake data (maximize log(1 - D(G(z)))) noise = get_noise(size=(len(batch.inputs), args.nz)) g_out = G.forward(noise) d_pred_fake = D.forward(g_out) label_fake = np.zeros_like(d_pred_fake) d_fake_err, d_fake_grad = D.backward(d_pred_fake, label_fake) # train D d_err = d_real_err + d_fake_err d_grads = d_real_grad + d_fake_grad D.apply_grad(d_grads) # ---- Train Generator --- # maximize log(D(G(z))) d_pred_fake = D.forward(g_out) g_err, d_grad = D.backward(d_pred_fake, label_real) g_grads = G.net.backward(d_grad.wrt_input) G.apply_grad(g_grads) running_d_err = 0.9 * running_d_err + 0.1 * d_err running_g_err = 0.9 * running_g_err + 0.1 * g_err if i % 100 == 0: print("epoch-%d iter-%d d_err: %.4f g_err: %.4f" % (epoch + 1, i + 1, running_d_err, running_g_err)) # sampling print("epoch: %d/%d d_err: %.4f g_err: %.4f" % (epoch + 1, args.num_ep, running_d_err, running_g_err)) samples = G.forward(fix_noise) img_name = "ep%d.png" % (epoch + 1) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) save_path = os.path.join(args.output_dir, img_name) save_batch_as_images(save_path, samples) # save generator model_path = os.path.join(args.output_dir, args.model_name) G.save(model_path) print("Saving generator ", model_path)
def main(args): if args.seed >= 0: random_seed(args.seed) # create output directory for saving result images if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # prepare and read dataset train_set, _, test_set = mnist(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set # specify the encoder and decoder net structure encoder_net = Net([Dense(256), ReLU(), Dense(64)]) decoder_net = Net([ReLU(), Dense(256), Tanh(), Dense(784), Tanh()]) nets = (encoder_net, decoder_net) optimizers = (Adam(args.lr), Adam(args.lr)) model = AutoEncoder(nets, loss=MSE(), optimizer=optimizers) # for pre-trained model, test generated images from latent space if args.load_model is not None: # load pre-trained model model.load(os.path.join(args.output_dir, args.load_model)) print("Loaded model fom %s" % args.load_model) # transition from test[from_idx] to test[to_idx] in n steps idx_arr, n = [2, 4, 32, 12, 82], 160 print("Transition in numbers", [test_y[i] for i in idx_arr], "in %d steps ..." % n) stops = [model.en_net.forward(test_x[i]) for i in idx_arr] k = int(n / (len(idx_arr) - 1)) # number of code per transition # generate all transition codes code_arr = [] for i in range(len(stops) - 1): t = [c.copy() for c in transition(stops[i], stops[i + 1], k)] code_arr += t # apply decoding all n "code" from latent space... batch = None for code in code_arr: # translate latent space to image genn = model.de_net.forward(code) # save decoded results in a batch if batch is None: batch = np.array(genn) else: batch = np.concatenate((batch, genn)) output_path = os.path.join(args.output_dir, "genn-latent.png") save_batch_as_images(output_path, batch) quit() # train the auto-encoder iterator = BatchIterator(batch_size=args.batch_size) for epoch in range(args.num_ep): for batch in iterator(train_x, train_y): origin_in = batch.inputs # make noisy inputs m = origin_in.shape[0] # batch size mu = args.gaussian_mean # mean sigma = args.gaussian_std # standard deviation noises = np.random.normal(mu, sigma, (m, 784)) noises_in = origin_in + noises # noisy inputs # forward genn = model.forward(noises_in) # back-propagate loss, grads = model.backward(genn, origin_in) # apply gradients model.apply_grad(grads) print("Epoch: %d Loss: %.3f" % (epoch, loss)) # save all the generated images and original inputs for this batch noises_in_path = os.path.join(args.output_dir, "ep%d-input.png" % epoch) genn_path = os.path.join(args.output_dir, "ep%d-genn.png" % epoch) save_batch_as_images(noises_in_path, noises_in, titles=batch.targets) save_batch_as_images(genn_path, genn, titles=batch.targets) # save the model after training model.save(os.path.join(args.output_dir, args.save_model))
def main(args): if args.seed >= 0: random_seed(args.seed) # create output directory for saving result images if not os.path.exists('./output'): os.mkdir('./output') # prepare and read dataset train_set, valid_set, test_set = prepare_dataset(args.data_dir) train_x, train_y = train_set test_x, test_y = test_set # batch iterator iterator = BatchIterator(batch_size=args.batch_size) # specify the encoder and decoder net structure encoder = Net([Dense(256), ReLU(), Dense(64)]) decoder = Net([ReLU(), Dense(256), Tanh(), Dense(784), Tanh()]) # create AutoEncoder model model = AutoEncoder(encoder=encoder, decoder=decoder, loss=MSELoss(), optimizer=Adam(args.lr)) # for pretrained model, test generated images from latent space if args.load_model is not None: # load pretrained model model.load(args.load_model) print('Loaded model from %s' % args.load_model) # transition from test[from_idx] to test[to_idx] in n steps idx_arr, n = [2, 4, 32, 12, 82], 160 print("Transition in numbers", [test_y[i] for i in idx_arr], "in %d steps ..." % n) stops = [model.encoder.forward(test_x[i]) for i in idx_arr] k = int(n / (len(idx_arr) - 1)) # number of code per transition # generate all transition codes code_arr = [] for i in range(len(stops) - 1): t = [c.copy() for c in transition(stops[i], stops[i + 1], k)] code_arr += t # apply decoding all n "code" from latent space... batch = None for code in code_arr: # translate latent space to image genn = model.decoder.forward(code) # save decoded results in a batch if batch is None: batch = np.array(genn) else: batch = np.concatenate((batch, genn)) save_batch_as_images('output/genn-latent.png', batch) quit() # train the autoencoder for epoch in range(args.num_ep): print('epoch %d ...' % epoch) for batch in iterator(train_x, train_y): origin_in = batch.inputs # make noisy inputs m = origin_in.shape[0] # batch size mu = args.guassian_mean # mean sigma = args.guassian_std # standard deviation noises = np.random.normal(mu, sigma, (m, 784)) noises_in = origin_in + noises # noisy inputs # train the representation genn = model.forward(noises_in) loss, grads = model.backward(genn, origin_in) model.apply_grad(grads) print('Loss: %.3f' % loss) # save all the generated images and original inputs for this batch save_batch_as_images('output/ep%d-input.png' % epoch, noises_in, titles=batch.targets) save_batch_as_images('output/ep%d-genn.png' % epoch, genn, titles=batch.targets) # save the model after training model.save('output/model.pkl')