Пример #1
0
    def pack(samples_path):
        samples_dat_path = samples_path / packed_faceset_filename

        if samples_dat_path.exists():
            io.log_info(f"{samples_dat_path} : file already exists !")
            io.input("Press enter to continue and overwrite.")

        as_person_faceset = False
        dir_names = pathex.get_all_dir_names(samples_path)
        if len(dir_names) != 0:
            as_person_faceset = io.input_bool(
                f"{len(dir_names)} subdirectories found, process as person faceset?",
                True)

        if as_person_faceset:
            image_paths = []

            for dir_name in dir_names:
                image_paths += pathex.get_image_paths(samples_path / dir_name)
        else:
            image_paths = pathex.get_image_paths(samples_path)

        samples = samplelib.SampleHost.load_face_samples(image_paths)
        samples_len = len(samples)

        samples_configs = []
        for sample in io.progress_bar_generator(samples, "Processing"):
            sample_filepath = Path(sample.filename)
            sample.filename = sample_filepath.name

            if as_person_faceset:
                sample.person_name = sample_filepath.parent.name
            samples_configs.append(sample.get_config())
        samples_bytes = pickle.dumps(samples_configs, 4)

        of = open(samples_dat_path, "wb")
        of.write(struct.pack("Q", PackedFaceset.VERSION))
        of.write(struct.pack("Q", len(samples_bytes)))
        of.write(samples_bytes)

        del samples_bytes  #just free mem
        del samples_configs

        sample_data_table_offset = of.tell()
        of.write(bytes(8 * (samples_len + 1)))  #sample data offset table

        data_start_offset = of.tell()
        offsets = []

        for sample in io.progress_bar_generator(samples, "Packing"):
            try:
                if sample.person_name is not None:
                    sample_path = samples_path / sample.person_name / sample.filename
                else:
                    sample_path = samples_path / sample.filename

                with open(sample_path, "rb") as f:
                    b = f.read()

                offsets.append(of.tell() - data_start_offset)
                of.write(b)
            except:
                raise Exception(f"error while processing sample {sample_path}")

        offsets.append(of.tell())

        of.seek(sample_data_table_offset, 0)
        for offset in offsets:
            of.write(struct.pack("Q", offset))
        of.seek(0, 2)
        of.close()

        for filename in io.progress_bar_generator(image_paths,
                                                  "Deleting files"):
            Path(filename).unlink()

        if as_person_faceset:
            for dir_name in io.progress_bar_generator(dir_names,
                                                      "Deleting dirs"):
                dir_path = samples_path / dir_name
                try:
                    shutil.rmtree(dir_path)
                except:
                    io.log_info(f"unable to remove: {dir_path} ")
Пример #2
0
def main(model_class_name=None,
         saved_models_path=None,
         training_data_src_path=None,
         force_model_name=None,
         input_path=None,
         output_path=None,
         output_mask_path=None,
         aligned_path=None,
         force_gpu_idxs=None,
         cpu_only=None):
    io.log_info("Running merger.\r\n")

    try:
        if not input_path.exists():
            io.log_err('Input directory not found. Please ensure it exists.')
            return

        if not output_path.exists():
            output_path.mkdir(parents=True, exist_ok=True)

        if not output_mask_path.exists():
            output_mask_path.mkdir(parents=True, exist_ok=True)

        if not saved_models_path.exists():
            io.log_err('Model directory not found. Please ensure it exists.')
            return

        # Initialize model
        import models
        model = models.import_model(model_class_name)(
            is_training=False,
            saved_models_path=saved_models_path,
            force_gpu_idxs=force_gpu_idxs,
            cpu_only=cpu_only)

        predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

        # Preparing MP functions
        predictor_func = MPFunc(predictor_func)

        run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
        fanseg_full_face_256_extract_func = MPClassFuncOnDemand(
            TernausNet,
            'extract',
            name=f'FANSeg_{FaceType.toString(FaceType.FULL)}',
            resolution=256,
            place_model_on_cpu=True,
            run_on_cpu=run_on_cpu)

        xseg_256_extract_func = MPClassFuncOnDemand(
            XSegNet,
            'extract',
            name='XSeg',
            resolution=256,
            weights_file_root=saved_models_path,
            place_model_on_cpu=True,
            run_on_cpu=run_on_cpu)

        face_enhancer_func = MPClassFuncOnDemand(FaceEnhancer,
                                                 'enhance',
                                                 place_model_on_cpu=True,
                                                 run_on_cpu=run_on_cpu)

        is_interactive = io.input_bool("Use interactive merger?",
                                       True) if not io.is_colab() else False

        if not is_interactive:
            cfg.ask_settings()

        input_path_image_paths = pathex.get_image_paths(input_path)

        if cfg.type == MergerConfig.TYPE_MASKED:
            if not aligned_path.exists():
                io.log_err(
                    'Aligned directory not found. Please ensure it exists.')
                return

            packed_samples = None
            try:
                packed_samples = samplelib.PackedFaceset.load(aligned_path)
            except:
                io.log_err(
                    f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}"
                )

            if packed_samples is not None:
                io.log_info("Using packed faceset.")

                def generator():
                    for sample in io.progress_bar_generator(
                            packed_samples, "Collecting alignments"):
                        filepath = Path(sample.filename)
                        yield filepath, DFLIMG.load(
                            filepath,
                            loader_func=lambda x: sample.read_raw_file())
            else:

                def generator():
                    for filepath in io.progress_bar_generator(
                            pathex.get_image_paths(aligned_path),
                            "Collecting alignments"):
                        filepath = Path(filepath)
                        yield filepath, DFLIMG.load(filepath)

            alignments = {}
            multiple_faces_detected = False

            for filepath, dflimg in generator():
                if dflimg is None or not dflimg.has_data():
                    io.log_err(f"{filepath.name} is not a dfl image file")
                    continue

                source_filename = dflimg.get_source_filename()
                if source_filename is None:
                    continue

                source_filepath = Path(source_filename)
                source_filename_stem = source_filepath.stem

                if source_filename_stem not in alignments.keys():
                    alignments[source_filename_stem] = []

                alignments_ar = alignments[source_filename_stem]
                alignments_ar.append(
                    (dflimg.get_source_landmarks(), filepath, source_filepath))

                if len(alignments_ar) > 1:
                    multiple_faces_detected = True

            if multiple_faces_detected:
                io.log_info("")
                io.log_info(
                    "Warning: multiple faces detected. Only one alignment file should refer one source file."
                )
                io.log_info("")

            for a_key in list(alignments.keys()):
                a_ar = alignments[a_key]
                if len(a_ar) > 1:
                    for _, filepath, source_filepath in a_ar:
                        io.log_info(
                            f"alignment {filepath.name} refers to {source_filepath.name} "
                        )
                    io.log_info("")

                alignments[a_key] = [a[0] for a in a_ar]

            if multiple_faces_detected:
                io.log_info(
                    "It is strongly recommended to process the faces separatelly."
                )
                io.log_info(
                    "Use 'recover original filename' to determine the exact duplicates."
                )
                io.log_info("")

            frames = [
                InteractiveMergerSubprocessor.Frame(frame_info=FrameInfo(
                    filepath=Path(p),
                    landmarks_list=alignments.get(Path(p).stem, None)))
                for p in input_path_image_paths
            ]

            if multiple_faces_detected:
                io.log_info(
                    "Warning: multiple faces detected. Motion blur will not be used."
                )
                io.log_info("")
            else:
                s = 256
                local_pts = [(s // 2 - 1, s // 2 - 1),
                             (s // 2 - 1, 0)]  #center+up
                frames_len = len(frames)
                for i in io.progress_bar_generator(range(len(frames)),
                                                   "Computing motion vectors"):
                    fi_prev = frames[max(0, i - 1)].frame_info
                    fi = frames[i].frame_info
                    fi_next = frames[min(i + 1, frames_len - 1)].frame_info
                    if len(fi_prev.landmarks_list) == 0 or \
                       len(fi.landmarks_list) == 0 or \
                       len(fi_next.landmarks_list) == 0:
                        continue

                    mat_prev = LandmarksProcessor.get_transform_mat(
                        fi_prev.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat = LandmarksProcessor.get_transform_mat(
                        fi.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat_next = LandmarksProcessor.get_transform_mat(
                        fi_next.landmarks_list[0], s, face_type=FaceType.FULL)

                    pts_prev = LandmarksProcessor.transform_points(
                        local_pts, mat_prev, True)
                    pts = LandmarksProcessor.transform_points(
                        local_pts, mat, True)
                    pts_next = LandmarksProcessor.transform_points(
                        local_pts, mat_next, True)

                    prev_vector = pts[0] - pts_prev[0]
                    next_vector = pts_next[0] - pts[0]

                    motion_vector = pts_next[0] - pts_prev[0]
                    fi.motion_power = npla.norm(motion_vector)

                    motion_vector = motion_vector / fi.motion_power if fi.motion_power != 0 else np.array(
                        [0, 0], dtype=np.float32)

                    fi.motion_deg = -math.atan2(
                        motion_vector[1], motion_vector[0]) * 180 / math.pi

        if len(frames) == 0:
            io.log_info("No frames to merge in input_dir.")
        else:
            if False:
                pass
            else:
                InteractiveMergerSubprocessor(
                    is_interactive=is_interactive,
                    merger_session_filepath=model.get_strpath_storage_for_file(
                        'merger_session.dat'),
                    predictor_func=predictor_func,
                    predictor_input_shape=predictor_input_shape,
                    face_enhancer_func=face_enhancer_func,
                    fanseg_full_face_256_extract_func=
                    fanseg_full_face_256_extract_func,
                    xseg_256_extract_func=xseg_256_extract_func,
                    merger_config=cfg,
                    frames=frames,
                    frames_root_path=input_path,
                    output_path=output_path,
                    output_mask_path=output_mask_path,
                    model_iter=model.get_iter()).run()

        model.finalize()

    except Exception as e:
        print(traceback.format_exc())
Пример #3
0
def main(detector=None,
         input_path=None,
         output_path=None,
         output_debug=None,
         manual_fix=False,
         manual_output_debug_fix=False,
         manual_window_size=1368,
         face_type='full_face',
         max_faces_from_image=0,
         cpu_only = False,
         force_gpu_idxs = None,
         ):
    face_type = FaceType.fromString(face_type)

    image_size = 512 if face_type == FaceType.WHOLE_FACE else 256
    
    if not input_path.exists():
        io.log_err ('Input directory not found. Please ensure it exists.')
        return

    if detector is None:
        io.log_info ("Choose detector type.")
        io.log_info ("[0] S3FD")
        io.log_info ("[1] manual")
        detector = {0:'s3fd', 1:'manual'}[ io.input_int("", 0, [0,1]) ]

    device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(choose_only_one=detector=='manual', suggest_all_gpu=True) ) \
                    if not cpu_only else nn.DeviceConfig.CPU()

    output_debug_path = output_path.parent / (output_path.name + '_debug')

    if output_debug is None:
        output_debug = io.input_bool (f"Write debug images to {output_debug_path.name}?", False)

    if output_path.exists():
        if not manual_output_debug_fix and input_path != output_path:
            output_images_paths = pathex.get_image_paths(output_path)
            if len(output_images_paths) > 0:
                io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n")
                for filename in output_images_paths:
                    Path(filename).unlink()
    else:
        output_path.mkdir(parents=True, exist_ok=True)

    input_path_image_paths = pathex.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)

    if manual_output_debug_fix:
        if not output_debug_path.exists():
            io.log_err(f'{output_debug_path} not found. Re-extract faces with "Write debug images" option.')
            return
        else:
            detector = 'manual'
            io.log_info('Performing re-extract frames which were deleted from _debug directory.')

            input_path_image_paths = DeletedFilesSearcherSubprocessor (input_path_image_paths, pathex.get_image_paths(output_debug_path) ).run()
            input_path_image_paths = sorted (input_path_image_paths)
            io.log_info('Found %d images.' % (len(input_path_image_paths)))
    else:
        if output_debug_path.exists():
            for filename in pathex.get_image_paths(output_debug_path):
                Path(filename).unlink()
        else:
            output_debug_path.mkdir(parents=True, exist_ok=True)

    images_found = len(input_path_image_paths)
    faces_detected = 0
    if images_found != 0:
        if detector == 'manual':
            io.log_info ('Performing manual extract...')
            data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_path_image_paths ], 'landmarks-manual', image_size, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()

            io.log_info ('Performing 3rd pass...')
            data = ExtractSubprocessor (data, 'final', image_size, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()

        else:
            io.log_info ('Extracting faces...')
            data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_path_image_paths ],
                                         'all',
                                         image_size,
                                         face_type,
                                         output_debug_path if output_debug else None,
                                         max_faces_from_image=max_faces_from_image,
                                         final_output_path=output_path,
                                         device_config=device_config).run()

        faces_detected += sum([d.faces_detected for d in data])

        if manual_fix:
            if all ( np.array ( [ d.faces_detected > 0 for d in data] ) == True ):
                io.log_info ('All faces are detected, manual fix not needed.')
            else:
                fix_data = [ ExtractSubprocessor.Data(d.filepath) for d in data if d.faces_detected == 0 ]
                io.log_info ('Performing manual fix for %d images...' % (len(fix_data)) )
                fix_data = ExtractSubprocessor (fix_data, 'landmarks-manual', image_size, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()
                fix_data = ExtractSubprocessor (fix_data, 'final', image_size, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()
                faces_detected += sum([d.faces_detected for d in fix_data])


    io.log_info ('-------------------------')
    io.log_info ('Images found:        %d' % (images_found) )
    io.log_info ('Faces detected:      %d' % (faces_detected) )
    io.log_info ('-------------------------')
Пример #4
0
def main(
    detector=None,
    input_path=None,
    output_path=None,
    output_debug=None,
    manual_fix=False,
    manual_output_debug_fix=False,
    manual_window_size=1368,
    face_type='full_face',
    max_faces_from_image=None,
    image_size=None,
    jpeg_quality=None,
    cpu_only=False,
    force_gpu_idxs=None,
):

    if not input_path.exists():
        io.log_err('Input directory not found. Please ensure it exists.')
        return

    if not output_path.exists():
        output_path.mkdir(parents=True, exist_ok=True)

    if face_type is not None:
        face_type = FaceType.fromString(face_type)

    if face_type is None:
        if manual_output_debug_fix:
            files = pathex.get_image_paths(output_path)
            if len(files) != 0:
                dflimg = DFLIMG.load(Path(files[0]))
                if dflimg is not None and dflimg.has_data():
                    face_type = FaceType.fromString(dflimg.get_face_type())

    input_image_paths = pathex.get_image_unique_filestem_paths(
        input_path, verbose_print_func=io.log_info)
    output_images_paths = pathex.get_image_paths(output_path)
    output_debug_path = output_path.parent / (output_path.name + '_debug')

    continue_extraction = False
    if not manual_output_debug_fix and len(output_images_paths) > 0:
        if len(output_images_paths) > 128:
            continue_extraction = io.input_bool(
                "Continue extraction?",
                True,
                help_message=
                "Extraction can be continued, but you must specify the same options again."
            )

        if len(output_images_paths) > 128 and continue_extraction:
            try:
                input_image_paths = input_image_paths[
                    [Path(x).stem for x in input_image_paths].
                    index(Path(output_images_paths[-128]).stem.split('_')[0]):]
            except:
                io.log_err(
                    "Error in fetching the last index. Extraction cannot be continued."
                )
                return
        elif input_path != output_path:
            io.input(
                f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n"
            )
            for filename in output_images_paths:
                Path(filename).unlink()

    device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(choose_only_one=detector=='manual', suggest_all_gpu=True) ) \
                    if not cpu_only else nn.DeviceConfig.CPU()

    if face_type is None:
        face_type = io.input_str(
            "Face type",
            'wf', ['f', 'wf', 'head'],
            help_message=
            "Full face / whole face / head. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset."
        ).lower()
        face_type = {
            'f': FaceType.FULL,
            'wf': FaceType.WHOLE_FACE,
            'head': FaceType.HEAD
        }[face_type]

    if max_faces_from_image is None:
        max_faces_from_image = io.input_int(
            f"Max number of faces from image",
            0,
            help_message=
            "If you extract a src faceset that has frames with a large number of faces, it is advisable to set max faces to 3 to speed up extraction. 0 - unlimited"
        )

    if image_size is None:
        image_size = io.input_int(
            f"Image size",
            512 if face_type < FaceType.HEAD else 768,
            valid_range=[256, 2048],
            help_message=
            "Output image size. The higher image size, the worse face-enhancer works. Use higher than 512 value only if the source image is sharp enough and the face does not need to be enhanced."
        )

    if jpeg_quality is None:
        jpeg_quality = io.input_int(
            f"Jpeg quality",
            90,
            valid_range=[1, 100],
            help_message=
            "Jpeg quality. The higher jpeg quality the larger the output file size."
        )

    if detector is None:
        io.log_info("Choose detector type.")
        io.log_info("[0] S3FD")
        io.log_info("[1] manual")
        detector = {0: 's3fd', 1: 'manual'}[io.input_int("", 0, [0, 1])]

    if output_debug is None:
        output_debug = io.input_bool(
            f"Write debug images to {output_debug_path.name}?", False)

    if output_debug:
        output_debug_path.mkdir(parents=True, exist_ok=True)

    if manual_output_debug_fix:
        if not output_debug_path.exists():
            io.log_err(
                f'{output_debug_path} not found. Re-extract faces with "Write debug images" option.'
            )
            return
        else:
            detector = 'manual'
            io.log_info(
                'Performing re-extract frames which were deleted from _debug directory.'
            )

            input_image_paths = DeletedFilesSearcherSubprocessor(
                input_image_paths,
                pathex.get_image_paths(output_debug_path)).run()
            input_image_paths = sorted(input_image_paths)
            io.log_info('Found %d images.' % (len(input_image_paths)))
    else:
        if not continue_extraction and output_debug_path.exists():
            for filename in pathex.get_image_paths(output_debug_path):
                Path(filename).unlink()

    images_found = len(input_image_paths)
    faces_detected = 0
    if images_found != 0:
        if detector == 'manual':
            io.log_info('Performing manual extract...')
            data = ExtractSubprocessor(
                [
                    ExtractSubprocessor.Data(Path(filename))
                    for filename in input_image_paths
                ],
                'landmarks-manual',
                image_size,
                jpeg_quality,
                face_type,
                output_debug_path if output_debug else None,
                manual_window_size=manual_window_size,
                device_config=device_config).run()

            io.log_info('Performing 3rd pass...')
            data = ExtractSubprocessor(
                data,
                'final',
                image_size,
                jpeg_quality,
                face_type,
                output_debug_path if output_debug else None,
                final_output_path=output_path,
                device_config=device_config).run()

        else:
            io.log_info('Extracting faces...')
            data = ExtractSubprocessor(
                [
                    ExtractSubprocessor.Data(Path(filename))
                    for filename in input_image_paths
                ],
                'all',
                image_size,
                jpeg_quality,
                face_type,
                output_debug_path if output_debug else None,
                max_faces_from_image=max_faces_from_image,
                final_output_path=output_path,
                device_config=device_config).run()

        faces_detected += sum([d.faces_detected for d in data])

        if manual_fix:
            if all(np.array([d.faces_detected > 0 for d in data]) == True):
                io.log_info('All faces are detected, manual fix not needed.')
            else:
                fix_data = [
                    ExtractSubprocessor.Data(d.filepath) for d in data
                    if d.faces_detected == 0
                ]
                io.log_info('Performing manual fix for %d images...' %
                            (len(fix_data)))
                fix_data = ExtractSubprocessor(
                    fix_data,
                    'landmarks-manual',
                    image_size,
                    jpeg_quality,
                    face_type,
                    output_debug_path if output_debug else None,
                    manual_window_size=manual_window_size,
                    device_config=device_config).run()
                fix_data = ExtractSubprocessor(
                    fix_data,
                    'final',
                    image_size,
                    jpeg_quality,
                    face_type,
                    output_debug_path if output_debug else None,
                    final_output_path=output_path,
                    device_config=device_config).run()
                faces_detected += sum([d.faces_detected for d in fix_data])

    io.log_info('-------------------------')
    io.log_info('Images found:        %d' % (images_found))
    io.log_info('Faces detected:      %d' % (faces_detected))
    io.log_info('-------------------------')
Пример #5
0
def dev_test_68(input_dir ):
    # process 68 landmarks dataset with .pts files
    input_path = Path(input_dir)
    if not input_path.exists():
        raise ValueError('input_dir not found. Please ensure it exists.')

    output_path = input_path.parent / (input_path.name+'_aligned')

    io.log_info(f'Output dir is % {output_path}')

    if output_path.exists():
        output_images_paths = pathex.get_image_paths(output_path)
        if len(output_images_paths) > 0:
            io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False )
            for filename in output_images_paths:
                Path(filename).unlink()
    else:
        output_path.mkdir(parents=True, exist_ok=True)

    images_paths = pathex.get_image_paths(input_path)

    for filepath in io.progress_bar_generator(images_paths, "Processing"):
        filepath = Path(filepath)


        pts_filepath = filepath.parent / (filepath.stem+'.pts')
        if pts_filepath.exists():
            pts = pts_filepath.read_text()
            pts_lines = pts.split('\n')

            lmrk_lines = None
            for pts_line in pts_lines:
                if pts_line == '{':
                    lmrk_lines = []
                elif pts_line == '}':
                    break
                else:
                    if lmrk_lines is not None:
                        lmrk_lines.append (pts_line)

            if lmrk_lines is not None and len(lmrk_lines) == 68:
                try:
                    lmrks = [ np.array ( lmrk_line.strip().split(' ') ).astype(np.float32).tolist() for lmrk_line in lmrk_lines]
                except Exception as e:
                    print(e)
                    print(filepath)
                    continue

                rect = LandmarksProcessor.get_rect_from_landmarks(lmrks)

                output_filepath = output_path / (filepath.stem+'.jpg')

                img = cv2_imread(filepath)
                img = imagelib.normalize_channels(img, 3)
                cv2_imwrite(output_filepath, img, [int(cv2.IMWRITE_JPEG_QUALITY), 95] )
                
                raise Exception("unimplemented")
                #DFLJPG.x(output_filepath, face_type=FaceType.toString(FaceType.MARK_ONLY),
                #                                landmarks=lmrks,
                #                                source_filename=filepath.name,
                #                                source_rect=rect,
                #                                source_landmarks=lmrks
                #                    )

    io.log_info("Done.")
Пример #6
0
def sort_by_hue(input_path):
    io.log_info ("Sorting by hue...")
    img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten()  )] for x in io.progress_bar_generator( pathex.get_image_paths(input_path), "Loading") ]
    io.log_info ("Sorting...")
    img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
    return img_list, []
Пример #7
0
def sort_by_absdiff(input_path):
    io.log_info ("Sorting by absolute difference...")

    is_sim = io.input_bool ("Sort by similar?", True, help_message="Otherwise sort by dissimilar.")

    from core.leras import nn

    device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
    nn.initialize( device_config=device_config, data_format="NHWC" )
    tf = nn.tf

    image_paths = pathex.get_image_paths(input_path)
    image_paths_len = len(image_paths)

    batch_size = 512
    batch_size_remain = image_paths_len % batch_size

    i_t = tf.placeholder (tf.float32, (None,None,None,None) )
    j_t = tf.placeholder (tf.float32, (None,None,None,None) )

    outputs_full = []
    outputs_remain = []

    for i in range(batch_size):
        diff_t = tf.reduce_sum( tf.abs(i_t-j_t[i]), axis=[1,2,3] )
        outputs_full.append(diff_t)
        if i < batch_size_remain:
            outputs_remain.append(diff_t)

    def func_bs_full(i,j):
        return nn.tf_sess.run (outputs_full, feed_dict={i_t:i,j_t:j})

    def func_bs_remain(i,j):
        return nn.tf_sess.run (outputs_remain, feed_dict={i_t:i,j_t:j})

    import h5py
    db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5'
    db_file = h5py.File( str(db_file_path), "w")
    db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip")

    pg_len = image_paths_len // batch_size
    if batch_size_remain != 0:
        pg_len += 1

    pg_len = int( (  pg_len*pg_len - pg_len ) / 2 + pg_len )

    io.progress_bar ("Computing", pg_len)
    j=0
    while j < image_paths_len:
        j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ]
        j_images_len = len(j_images)

        func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full

        i=0
        while i < image_paths_len:
            if i >= j:
                i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ]
                i_images_len = len(i_images)
                result = func (i_images,j_images)
                db[j:j+j_images_len,i:i+i_images_len] = np.array(result)
                io.progress_bar_inc(1)

            i += batch_size
        db_file.flush()
        j += batch_size

    io.progress_bar_close()

    next_id = 0
    sorted = [next_id]
    for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ):
        id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] )
        id_ar = np.argsort(id_ar)


        next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1]
        sorted += [next_id]
    db_file.close()
    db_file_path.unlink()

    img_list = [ (image_paths[x],) for x in sorted]
    return img_list, []
Пример #8
0
def main(model_class_name=None,
         saved_models_path=None,
         training_data_src_path=None,
         force_model_name=None,
         input_path=None,
         output_path=None,
         output_mask_path=None,
         aligned_path=None,
         force_gpu_idxs=None,
         cpu_only=None):
    io.log_info("Running merger.\r\n")

    try:
        if not input_path.exists():
            io.log_err('Input directory not found. Please ensure it exists.')
            return

        if not output_path.exists():
            output_path.mkdir(parents=True, exist_ok=True)

        if not output_mask_path.exists():
            output_mask_path.mkdir(parents=True, exist_ok=True)

        if not saved_models_path.exists():
            io.log_err('Model directory not found. Please ensure it exists.')
            return

        is_interactive = io.input_bool("Use interactive merger?",
                                       True) if not io.is_colab() else False

        import models
        model = models.import_model(model_class_name)(
            is_training=False,
            saved_models_path=saved_models_path,
            training_data_src_path=training_data_src_path,
            force_gpu_idxs=force_gpu_idxs,
            cpu_only=cpu_only)
        merger_session_filepath = model.get_strpath_storage_for_file(
            'merger_session.dat')
        predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

        if not is_interactive:
            cfg.ask_settings()

        input_path_image_paths = pathex.get_image_paths(input_path)

        if cfg.type == MergerConfig.TYPE_MASKED:
            if not aligned_path.exists():
                io.log_err(
                    'Aligned directory not found. Please ensure it exists.')
                return

            packed_samples = None
            try:
                packed_samples = samplelib.PackedFaceset.load(aligned_path)
            except:
                io.log_err(
                    f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}"
                )

            if packed_samples is not None:
                io.log_info("Using packed faceset.")

                def generator():
                    for sample in io.progress_bar_generator(
                            packed_samples, "Collecting alignments"):
                        filepath = Path(sample.filename)
                        yield filepath, DFLIMG.load(
                            filepath,
                            loader_func=lambda x: sample.read_raw_file())
            else:

                def generator():
                    for filepath in io.progress_bar_generator(
                            pathex.get_image_paths(aligned_path),
                            "Collecting alignments"):
                        filepath = Path(filepath)
                        yield filepath, DFLIMG.load(filepath)

            alignments = {}
            multiple_faces_detected = False

            for filepath, dflimg in generator():
                if dflimg is None:
                    io.log_err("%s is not a dfl image file" % (filepath.name))
                    continue

                source_filename = dflimg.get_source_filename()
                if source_filename is None:
                    continue

                source_filepath = Path(source_filename)
                source_filename_stem = source_filepath.stem

                if source_filename_stem not in alignments.keys():
                    alignments[source_filename_stem] = []

                alignments_ar = alignments[source_filename_stem]
                alignments_ar.append(
                    (dflimg.get_source_landmarks(), filepath, source_filepath))

                if len(alignments_ar) > 1:
                    multiple_faces_detected = True

            if multiple_faces_detected:
                io.log_info("")
                io.log_info(
                    "Warning: multiple faces detected. Only one alignment file should refer one source file."
                )
                io.log_info("")

            for a_key in list(alignments.keys()):
                a_ar = alignments[a_key]
                if len(a_ar) > 1:
                    for _, filepath, source_filepath in a_ar:
                        io.log_info(
                            f"alignment {filepath.name} refers to {source_filepath.name} "
                        )
                    io.log_info("")

                alignments[a_key] = [a[0] for a in a_ar]

            if multiple_faces_detected:
                io.log_info(
                    "It is strongly recommended to process the faces separatelly."
                )
                io.log_info(
                    "Use 'recover original filename' to determine the exact duplicates."
                )
                io.log_info("")

            filesdata = []
            for filepath in io.progress_bar_generator(input_path_image_paths,
                                                      "Collecting info"):
                filepath = Path(filepath)
                filesdata += [
                    FrameInfo(filepath=filepath,
                              landmarks_list=alignments.get(
                                  filepath.stem, None))
                ]

            frames = []
            filesdata_len = len(filesdata)
            for i in range(len(filesdata)):
                frame_info = filesdata[i]

                if multiple_faces_detected:
                    prev_temporal_frame_infos = None
                    next_temporal_frame_infos = None
                else:
                    prev_temporal_frame_infos = []
                    next_temporal_frame_infos = []

                    for t in range(1, 6):
                        prev_frame_info = filesdata[max(i - t, 0)]
                        next_frame_info = filesdata[min(
                            i + t, filesdata_len - 1)]

                        prev_temporal_frame_infos.insert(0, prev_frame_info)
                        next_temporal_frame_infos.append(next_frame_info)

                frames.append(
                    MergeSubprocessor.Frame(
                        prev_temporal_frame_infos=prev_temporal_frame_infos,
                        frame_info=frame_info,
                        next_temporal_frame_infos=next_temporal_frame_infos))

            if multiple_faces_detected:
                io.log_info(
                    "Warning: multiple faces detected. Motion blur will not be used."
                )
                io.log_info("")
            else:
                s = 256
                local_pts = [(s // 2 - 1, s // 2 - 1),
                             (s // 2 - 1, 0)]  #center+up
                frames_len = len(frames)
                for i in io.progress_bar_generator(range(len(frames)),
                                                   "Computing motion vectors"):
                    fi_prev = frames[max(0, i - 1)].frame_info
                    fi = frames[i].frame_info
                    fi_next = frames[min(i + 1, frames_len - 1)].frame_info
                    if len(fi_prev.landmarks_list) == 0 or \
                       len(fi.landmarks_list) == 0 or \
                       len(fi_next.landmarks_list) == 0:
                        continue

                    mat_prev = LandmarksProcessor.get_transform_mat(
                        fi_prev.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat = LandmarksProcessor.get_transform_mat(
                        fi.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat_next = LandmarksProcessor.get_transform_mat(
                        fi_next.landmarks_list[0], s, face_type=FaceType.FULL)

                    pts_prev = LandmarksProcessor.transform_points(
                        local_pts, mat_prev, True)
                    pts = LandmarksProcessor.transform_points(
                        local_pts, mat, True)
                    pts_next = LandmarksProcessor.transform_points(
                        local_pts, mat_next, True)

                    prev_vector = pts[0] - pts_prev[0]
                    next_vector = pts_next[0] - pts[0]

                    motion_vector = pts_next[0] - pts_prev[0]
                    fi.motion_power = npla.norm(motion_vector)

                    motion_vector = motion_vector / fi.motion_power if fi.motion_power != 0 else np.array(
                        [0, 0], dtype=np.float32)

                    fi.motion_deg = -math.atan2(
                        motion_vector[1], motion_vector[0]) * 180 / math.pi

        elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
            pass
            """
            filesdata = []
            for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
                filepath = Path(filepath)

                dflimg = DFLIMG.load(filepath)
                if dflimg is None:
                    io.log_err ("%s is not a dfl image file" % (filepath.name) )
                    continue
                filesdata += [ ( FrameInfo(filepath=filepath, landmarks_list=[dflimg.get_landmarks()] ), dflimg.get_source_filename() ) ]

            filesdata = sorted(filesdata, key=operator.itemgetter(1)) #sort by source_filename
            frames = []
            filesdata_len = len(filesdata)
            for i in range(len(filesdata)):
                frame_info = filesdata[i][0]

                prev_temporal_frame_infos = []
                next_temporal_frame_infos = []

                for t in range (cfg.temporal_face_count):
                    prev_frame_info = filesdata[ max(i -t, 0) ][0]
                    next_frame_info = filesdata[ min(i +t, filesdata_len-1 )][0]

                    prev_temporal_frame_infos.insert (0, prev_frame_info )
                    next_temporal_frame_infos.append (   next_frame_info )

                frames.append ( MergeSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
                                                          frame_info=frame_info,
                                                          next_temporal_frame_infos=next_temporal_frame_infos) )
            """
        if len(frames) == 0:
            io.log_info("No frames to merge in input_dir.")
        else:
            MergeSubprocessor(is_interactive=is_interactive,
                              merger_session_filepath=merger_session_filepath,
                              predictor_func=predictor_func,
                              predictor_input_shape=predictor_input_shape,
                              merger_config=cfg,
                              frames=frames,
                              frames_root_path=input_path,
                              output_path=output_path,
                              output_mask_path=output_mask_path,
                              model_iter=model.get_iter()).run()

        model.finalize()

    except Exception as e:
        print('Error: %s' % (str(e)))
        traceback.print_exc()
Пример #9
0
def extract_vggface2_dataset(input_dir, device_args={}):
    multi_gpu = device_args.get('multi_gpu', False)
    cpu_only = device_args.get('cpu_only', False)

    input_path = Path(input_dir)
    if not input_path.exists():
        raise ValueError('Input directory not found. Please ensure it exists.')

    bb_csv = input_path / 'loose_bb_train.csv'
    if not bb_csv.exists():
        raise ValueError('loose_bb_train.csv found. Please ensure it exists.')

    bb_lines = bb_csv.read_text().split('\n')
    bb_lines.pop(0)

    bb_dict = {}
    for line in bb_lines:
        name, l, t, w, h = line.split(',')
        name = name[1:-1]
        l, t, w, h = [int(x) for x in (l, t, w, h)]
        bb_dict[name] = (l, t, w, h)

    output_path = input_path.parent / (input_path.name + '_out')

    dir_names = pathex.get_all_dir_names(input_path)

    if not output_path.exists():
        output_path.mkdir(parents=True, exist_ok=True)

    data = []
    for dir_name in io.progress_bar_generator(dir_names, "Collecting"):
        cur_input_path = input_path / dir_name
        cur_output_path = output_path / dir_name

        if not cur_output_path.exists():
            cur_output_path.mkdir(parents=True, exist_ok=True)

        input_path_image_paths = pathex.get_image_paths(cur_input_path)

        for filename in input_path_image_paths:
            filename_path = Path(filename)

            name = filename_path.parent.name + '/' + filename_path.stem
            if name not in bb_dict:
                continue

            l, t, w, h = bb_dict[name]
            if min(w, h) < 128:
                continue

            data += [
                ExtractSubprocessor.Data(filename=filename,
                                         rects=[(l, t, l + w, t + h)],
                                         landmarks_accurate=False,
                                         force_output_path=cur_output_path)
            ]

    face_type = FaceType.fromString('full_face')

    io.log_info('Performing 2nd pass...')
    data = ExtractSubprocessor(data,
                               'landmarks',
                               256,
                               face_type,
                               debug_dir=None,
                               multi_gpu=multi_gpu,
                               cpu_only=cpu_only,
                               manual=False).run()

    io.log_info('Performing 3rd pass...')
    ExtractSubprocessor(data,
                        'final',
                        256,
                        face_type,
                        debug_dir=None,
                        multi_gpu=multi_gpu,
                        cpu_only=cpu_only,
                        manual=False,
                        final_output_path=None).run()
Пример #10
0
def main(model_class_name=None,
         saved_models_path=None,
         training_data_src_path=None,
         force_model_name=None,
         input_path=None,
         output_path=None,
         output_mask_path=None,
         aligned_path=None,
         force_gpu_idxs=None,
         cpu_only=None):
    io.log_info("启动合成程序.\r\n")

    try:
        if not input_path.exists():
            io.log_err('找不到输入文件')
            return

        if not output_path.exists():
            output_path.mkdir(parents=True, exist_ok=True)

        if not output_mask_path.exists():
            output_mask_path.mkdir(parents=True, exist_ok=True)

        if not saved_models_path.exists():
            io.log_err('找不到模型文件夹')
            return

        # Initialize model
        import models
        model = models.import_model(model_class_name)(
            is_training=False,
            saved_models_path=saved_models_path,
            force_gpu_idxs=force_gpu_idxs,
            cpu_only=cpu_only)

        predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

        # Preparing MP functions
        predictor_func = MPFunc(predictor_func)

        run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
        xseg_256_extract_func = MPClassFuncOnDemand(
            XSegNet,
            'extract',
            name='XSeg',
            resolution=256,
            weights_file_root=saved_models_path,
            place_model_on_cpu=True,
            run_on_cpu=run_on_cpu)

        face_enhancer_func = MPClassFuncOnDemand(FaceEnhancer,
                                                 'enhance',
                                                 place_model_on_cpu=True,
                                                 run_on_cpu=run_on_cpu)

        is_interactive = io.input_bool("是否启用交互式合成?",
                                       True) if not io.is_colab() else False

        if not is_interactive:
            cfg.ask_settings()

        subprocess_count = io.input_int(
            "线程数量?",
            max(8, multiprocessing.cpu_count()),
            valid_range=[1, multiprocessing.cpu_count()],
            help_message=
            "Specify the number of threads to process. A low value may affect performance. A high value may result in memory error. The value may not be greater than CPU cores."
        )

        input_path_image_paths = pathex.get_image_paths(input_path)

        if cfg.type == MergerConfig.TYPE_MASKED:
            if not aligned_path.exists():
                io.log_err('头像文件不存在')
                return

            packed_samples = None
            try:
                packed_samples = samplelib.PackedFaceset.load(aligned_path)
            except:
                io.log_err(
                    f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}"
                )

            if packed_samples is not None:
                io.log_info("正在使用打包数据集.")

                def generator():
                    for sample in io.progress_bar_generator(
                            packed_samples, "收集对齐头像"):
                        filepath = Path(sample.filename)
                        yield filepath, DFLIMG.load(
                            filepath,
                            loader_func=lambda x: sample.read_raw_file())
            else:

                def generator():
                    for filepath in io.progress_bar_generator(
                            pathex.get_image_paths(aligned_path), "收集对齐头像"):
                        filepath = Path(filepath)
                        yield filepath, DFLIMG.load(filepath)

            alignments = {}
            multiple_faces_detected = False

            for filepath, dflimg in generator():
                if dflimg is None or not dflimg.has_data():
                    io.log_err(f"{filepath.name} is not a dfl image file")
                    continue

                source_filename = dflimg.get_source_filename()
                if source_filename is None:
                    continue

                source_filepath = Path(source_filename)
                source_filename_stem = source_filepath.stem

                if source_filename_stem not in alignments.keys():
                    alignments[source_filename_stem] = []

                alignments_ar = alignments[source_filename_stem]
                alignments_ar.append(
                    (dflimg.get_source_landmarks(), filepath, source_filepath))

                if len(alignments_ar) > 1:
                    multiple_faces_detected = True

            if multiple_faces_detected:
                io.log_info("")
                io.log_info("警告: 检测到多个人脸. 一个对齐头像应该对应一个源文件.")
                io.log_info("")

            for a_key in list(alignments.keys()):
                a_ar = alignments[a_key]
                if len(a_ar) > 1:
                    for _, filepath, source_filepath in a_ar:
                        io.log_info(
                            f"alignment {filepath.name} refers to {source_filepath.name} "
                        )
                    io.log_info("")

                alignments[a_key] = [a[0] for a in a_ar]

            if multiple_faces_detected:
                io.log_info("强烈建议分开处理人脸.")
                io.log_info("使用 'recover original filename' 确定提取的唯一性.")
                io.log_info("")

            frames = [
                InteractiveMergerSubprocessor.Frame(frame_info=FrameInfo(
                    filepath=Path(p),
                    landmarks_list=alignments.get(Path(p).stem, None)))
                for p in input_path_image_paths
            ]

            if multiple_faces_detected:
                io.log_info(
                    "Warning: multiple faces detected. Motion blur will not be used."
                )
                io.log_info("")
            else:
                s = 256
                local_pts = [(s // 2 - 1, s // 2 - 1),
                             (s // 2 - 1, 0)]  #center+up
                frames_len = len(frames)
                for i in io.progress_bar_generator(range(len(frames)),
                                                   "计算运动矢量"):
                    fi_prev = frames[max(0, i - 1)].frame_info
                    fi = frames[i].frame_info
                    fi_next = frames[min(i + 1, frames_len - 1)].frame_info
                    if len(fi_prev.landmarks_list) == 0 or \
                       len(fi.landmarks_list) == 0 or \
                       len(fi_next.landmarks_list) == 0:
                        continue

                    mat_prev = LandmarksProcessor.get_transform_mat(
                        fi_prev.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat = LandmarksProcessor.get_transform_mat(
                        fi.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat_next = LandmarksProcessor.get_transform_mat(
                        fi_next.landmarks_list[0], s, face_type=FaceType.FULL)

                    pts_prev = LandmarksProcessor.transform_points(
                        local_pts, mat_prev, True)
                    pts = LandmarksProcessor.transform_points(
                        local_pts, mat, True)
                    pts_next = LandmarksProcessor.transform_points(
                        local_pts, mat_next, True)

                    prev_vector = pts[0] - pts_prev[0]
                    next_vector = pts_next[0] - pts[0]

                    motion_vector = pts_next[0] - pts_prev[0]
                    fi.motion_power = npla.norm(motion_vector)

                    motion_vector = motion_vector / fi.motion_power if fi.motion_power != 0 else np.array(
                        [0, 0], dtype=np.float32)

                    fi.motion_deg = -math.atan2(
                        motion_vector[1], motion_vector[0]) * 180 / math.pi

        if len(frames) == 0:
            io.log_info("没有可用图片")
        else:
            if False:
                pass
            else:
                InteractiveMergerSubprocessor(
                    is_interactive=is_interactive,
                    merger_session_filepath=model.get_strpath_storage_for_file(
                        'merger_session.dat'),
                    predictor_func=predictor_func,
                    predictor_input_shape=predictor_input_shape,
                    face_enhancer_func=face_enhancer_func,
                    xseg_256_extract_func=xseg_256_extract_func,
                    merger_config=cfg,
                    frames=frames,
                    frames_root_path=input_path,
                    output_path=output_path,
                    output_mask_path=output_mask_path,
                    model_iter=model.get_iter(),
                    subprocess_count=subprocess_count,
                ).run()

        model.finalize()

    except Exception as e:
        print(traceback.format_exc())
Пример #11
0
    def __init__(self, is_interactive, merger_session_filepath, predictor_func,
                 predictor_input_shape, merger_config, frames,
                 frames_root_path, output_path, output_mask_path, model_iter):
        if len(frames) == 0:
            raise ValueError("len (frames) == 0")

        super().__init__('Merger',
                         MergeSubprocessor.Cli,
                         86400 if MERGER_DEBUG else 60,
                         io_loop_sleep_time=0.001)

        self.is_interactive = is_interactive
        self.merger_session_filepath = Path(merger_session_filepath)
        self.merger_config = merger_config

        self.predictor_func_host, self.predictor_func = SubprocessFunctionCaller.make_pair(
            predictor_func)
        self.predictor_input_shape = predictor_input_shape

        self.face_enhancer = None

        def superres_func(face_bgr):
            if self.face_enhancer is None:
                self.face_enhancer = FaceEnhancer(place_model_on_cpu=True)

            return self.face_enhancer.enhance(face_bgr,
                                              is_tanh=True,
                                              preserve_size=False)

        self.superres_host, self.superres_func = SubprocessFunctionCaller.make_pair(
            superres_func)

        self.fanseg_by_face_type = {}
        self.fanseg_input_size = 256

        def fanseg_extract_func(face_type, *args, **kwargs):
            fanseg = self.fanseg_by_face_type.get(face_type, None)
            if self.fanseg_by_face_type.get(face_type, None) is None:
                cpu_only = len(nn.getCurrentDeviceConfig().devices) == 0

                with nn.tf.device('/CPU:0' if cpu_only else '/GPU:0'):
                    fanseg = TernausNet("FANSeg",
                                        self.fanseg_input_size,
                                        FaceType.toString(face_type),
                                        place_model_on_cpu=True)

                self.fanseg_by_face_type[face_type] = fanseg
            return fanseg.extract(*args, **kwargs)

        self.fanseg_host, self.fanseg_extract_func = SubprocessFunctionCaller.make_pair(
            fanseg_extract_func)

        self.frames_root_path = frames_root_path
        self.output_path = output_path
        self.output_mask_path = output_mask_path
        self.model_iter = model_iter

        self.prefetch_frame_count = self.process_count = multiprocessing.cpu_count(
        )

        session_data = None
        if self.is_interactive and self.merger_session_filepath.exists():
            io.input_skip_pending()
            if io.input_bool("Use saved session?", True):
                try:
                    with open(str(self.merger_session_filepath), "rb") as f:
                        session_data = pickle.loads(f.read())

                except Exception as e:
                    pass

        rewind_to_frame_idx = None
        self.frames = frames
        self.frames_idxs = [*range(len(self.frames))]
        self.frames_done_idxs = []

        if self.is_interactive and session_data is not None:
            # Loaded session data, check it
            s_frames = session_data.get('frames', None)
            s_frames_idxs = session_data.get('frames_idxs', None)
            s_frames_done_idxs = session_data.get('frames_done_idxs', None)
            s_model_iter = session_data.get('model_iter', None)

            frames_equal = (s_frames is not None) and \
                           (s_frames_idxs is not None) and \
                           (s_frames_done_idxs is not None) and \
                           (s_model_iter is not None) and \
                           (len(frames) == len(s_frames)) # frames count must match

            if frames_equal:
                for i in range(len(frames)):
                    frame = frames[i]
                    s_frame = s_frames[i]
                    # frames filenames must match
                    if frame.frame_info.filepath.name != s_frame.frame_info.filepath.name:
                        frames_equal = False
                    if not frames_equal:
                        break

            if frames_equal:
                io.log_info('Using saved session from ' +
                            '/'.join(self.merger_session_filepath.parts[-2:]))

                for frame in s_frames:
                    if frame.cfg is not None:
                        # recreate MergerConfig class using constructor with get_config() as dict params
                        # so if any new param will be added, old merger session will work properly
                        frame.cfg = frame.cfg.__class__(
                            **frame.cfg.get_config())

                self.frames = s_frames
                self.frames_idxs = s_frames_idxs
                self.frames_done_idxs = s_frames_done_idxs

                if self.model_iter != s_model_iter:
                    # model was more trained, recompute all frames
                    rewind_to_frame_idx = -1
                    for frame in self.frames:
                        frame.is_done = False
                elif len(self.frames_idxs) == 0:
                    # all frames are done?
                    rewind_to_frame_idx = -1

                if len(self.frames_idxs) != 0:
                    cur_frame = self.frames[self.frames_idxs[0]]
                    cur_frame.is_shown = False

            if not frames_equal:
                session_data = None

        if session_data is None:
            for filename in pathex.get_image_paths(
                    self.output_path):  #remove all images in output_path
                Path(filename).unlink()

            for filename in pathex.get_image_paths(
                    self.output_mask_path
            ):  #remove all images in output_mask_path
                Path(filename).unlink()

            frames[0].cfg = self.merger_config.copy()

        for i in range(len(self.frames)):
            frame = self.frames[i]
            frame.idx = i
            frame.output_filepath = self.output_path / (
                frame.frame_info.filepath.stem + '.png')
            frame.output_mask_filepath = self.output_mask_path / (
                frame.frame_info.filepath.stem + '.png')

            if not frame.output_filepath.exists() or \
               not frame.output_mask_filepath.exists():
                # if some frame does not exist, recompute and rewind
                frame.is_done = False
                frame.is_shown = False

                if rewind_to_frame_idx is None:
                    rewind_to_frame_idx = i - 1
                else:
                    rewind_to_frame_idx = min(rewind_to_frame_idx, i - 1)

        if rewind_to_frame_idx is not None:
            while len(self.frames_done_idxs) > 0:
                if self.frames_done_idxs[-1] > rewind_to_frame_idx:
                    prev_frame = self.frames[self.frames_done_idxs.pop()]
                    self.frames_idxs.insert(0, prev_frame.idx)
                else:
                    break
Пример #12
0
 def generator():
     for filepath in io.progress_bar_generator(
             pathex.get_image_paths(aligned_path), "收集对齐头像"):
         filepath = Path(filepath)
         yield filepath, DFLIMG.load(filepath)
    def __init__(self,
                 root_path,
                 debug=False,
                 batch_size=1,
                 resolution=256,
                 face_type=None,
                 generators_count=4,
                 data_format="NHWC",
                 **kwargs):

        super().__init__(debug, batch_size)
        self.initialized = False

        dataset_path = root_path / 'AvatarOperatorDataset'
        if not dataset_path.exists():
            raise ValueError(f'Unable to find {dataset_path}')

        chains_dir_names = pathex.get_all_dir_names(dataset_path)

        samples = SampleLoader.load(SampleType.FACE,
                                    dataset_path,
                                    subdirs=True)
        sample_idx_by_path = {
            sample.filename: i
            for i, sample in enumerate(samples)
        }

        kf_idxs = []

        for chain_dir_name in chains_dir_names:
            chain_root_path = dataset_path / chain_dir_name

            subchain_dir_names = pathex.get_all_dir_names(chain_root_path)
            try:
                subchain_dir_names.sort(key=int)
            except:
                raise Exception(
                    f'{chain_root_path} must contain only numerical name of directories'
                )
            chain_samples = []

            for subchain_dir_name in subchain_dir_names:
                subchain_root = chain_root_path / subchain_dir_name
                subchain_samples = [  sample_idx_by_path[image_path] for image_path in pathex.get_image_paths(subchain_root) \
                                                                     if image_path in sample_idx_by_path ]

                if len(subchain_samples) < 3:
                    raise Exception(
                        f'subchain {subchain_dir_name} must contain at least 3 faces. If you delete this subchain, then th echain will be corrupted.'
                    )

                chain_samples += [subchain_samples]

            chain_samples_len = len(chain_samples)
            for i in range(chain_samples_len - 1):
                kf_idxs += [(chain_samples[i + 1][0], chain_samples[i][-1],
                             chain_samples[i][:-1])]

            for i in range(1, chain_samples_len):
                kf_idxs += [(chain_samples[i - 1][-1], chain_samples[i][0],
                             chain_samples[i][1:])]

        if self.debug:
            self.generators_count = 1
        else:
            self.generators_count = max(1, generators_count)

        if self.debug:
            self.generators = [
                ThisThreadGenerator(
                    self.batch_func,
                    (samples, kf_idxs, resolution, face_type, data_format))
            ]
        else:
            self.generators = [SubprocessGenerator ( self.batch_func, (samples, kf_idxs, resolution, face_type, data_format), start_now=False ) \
                               for i in range(self.generators_count) ]

            SubprocessGenerator.start_in_parallel(self.generators)

        self.generator_counter = -1

        self.initialized = True
Пример #14
0
    def extract_video(self, input_file, output_dir, output_ext=None, fps=None):
        input_file_path = Path(input_file)
        output_path = Path(output_dir)

        if not output_path.exists():
            output_path.mkdir(exist_ok=True)
        # self.g_progress_info.append("\n视频帧输出目录: " + str(Path(output_path).absolute()))
        # self.NoteTipsEdit.append("\n视频帧输出目录: " + str(Path(output_path).absolute()))
        InfoNotifier.InfoNotifier.g_progress_info.append(
            "\n视频帧输出目录: " + str(Path(output_path).absolute()))

        if input_file_path.suffix == '.*':
            input_file_path = pathex.get_first_file_by_stem(
                input_file_path.parent, input_file_path.stem)
        else:
            if not input_file_path.exists():
                input_file_path = None

        # self.g_progress_info.append("\n视频输入路径:" + str(input_file_path))
        # self.NoteTipsEdit.append("\n视频输入路径:" + str(input_file_path))
        InfoNotifier.InfoNotifier.g_progress_info.append("\n视频输入路径:" +
                                                         str(input_file_path))

        if input_file_path is None:
            io.log_err("input_file not found.")
            # self.g_progress_info.append("\n视频输入路径不存在")
            # self.NoteTipsEdit.append("\n视频输入路径不存在")
            InfoNotifier.InfoNotifier.g_progress_info.append("\n视频输入路径不存在")
            return

        # if fps is None:
        #     fps = io.input_int("Enter FPS", 0,
        #                        help_message="How many frames of every second of the video will be extracted. 0 - full fps")
        # self.NoteTipsEdit.append("\n读取不到帧")

        # self.g_progress_info.append("\n视频帧抽取频率: full fps")
        # self.NoteTipsEdit.append("\n视频帧抽取频率: full fps")

        if output_ext is None:
            output_ext = io.input_str(
                "Output image format",
                "png", ["png", "jpg"],
                help_message=
                "png is lossless, but extraction is x10 slower for HDD, requires x10 more disk space than jpg."
            )

        # self.g_progress_info.append("\n视频帧输出格式频率: " + output_ext)
        # self.NoteTipsEdit.append("\n视频帧输出格式频率: " + output_ext)
        InfoNotifier.InfoNotifier.g_progress_info.append("\n视频帧输出格式频率: " +
                                                         output_ext)

        filenames = pathex.get_image_paths(output_path, ['.' + output_ext])
        if len(filenames) != 0:
            # self.g_progress_info.append("\n视频帧输出目录不为空, 该目录将被清空!")
            InfoNotifier.InfoNotifier.g_progress_info.append(
                "\n视频帧输出目录不为空, 该目录将被清空!")
            # self.NoteTipsEdit.append("\n视频帧输出目录不为空, 该目录将被清空!")
            # Ui_MainWindow.setupUi(self.NoteTipsEdit.append())

        for filename in filenames:
            Path(filename).unlink()
            QApplication.processEvents()

        job = ffmpeg.input(str(input_file_path))

        kwargs = {'pix_fmt': 'rgb24'}
        # if fps !=0:
        kwargs.update({'r': str(fps)})

        if output_ext == 'jpg':
            kwargs.update({'q:v': '2'})  # highest quality for jpg

        job = job.output(str(output_path / ('%5d.' + output_ext)), **kwargs)

        try:
            job, err = job.run(cmd=self.ffmpeg_cmd_path)
        except:
            io.log_err("ffmpeg fail, job commandline:" + str(job.compile()))
Пример #15
0
def mask_editor_main(input_dir, confirmed_dir=None, skipped_dir=None, no_default_mask=False):
    input_path = Path(input_dir)

    confirmed_path = Path(confirmed_dir)
    skipped_path = Path(skipped_dir)

    if not input_path.exists():
        raise ValueError('Input directory not found. Please ensure it exists.')

    if not confirmed_path.exists():
        confirmed_path.mkdir(parents=True)

    if not skipped_path.exists():
        skipped_path.mkdir(parents=True)
        
    if not no_default_mask:
        eyebrows_expand_mod = np.clip ( io.input_int ("Default eyebrows expand modifier?", 100, add_info="0..400"), 0, 400 ) / 100.0
    else:
        eyebrows_expand_mod = None

    wnd_name = "MaskEditor tool"
    io.named_window (wnd_name)
    io.capture_mouse(wnd_name)
    io.capture_keys(wnd_name)

    cached_images = {}

    image_paths = [ Path(x) for x in pathex.get_image_paths(input_path)]
    done_paths = []
    done_images_types = {}
    image_paths_total = len(image_paths)
    saved_ie_polys = IEPolys()
    zoom_factor = 1.0
    preview_images_count = 9
    target_wh = 256

    do_prev_count = 0
    do_save_move_count = 0
    do_save_count = 0
    do_skip_move_count = 0
    do_skip_count = 0
    
    def jobs_count():
        return do_prev_count + do_save_move_count + do_save_count + do_skip_move_count + do_skip_count

    is_exit = False
    while not is_exit:

        if len(image_paths) > 0:
            filepath = image_paths.pop(0)
        else:
            filepath = None

        next_image_paths = image_paths[0:preview_images_count]
        next_image_paths_names = [ path.name for path in next_image_paths ]
        prev_image_paths = done_paths[-preview_images_count:]
        prev_image_paths_names = [ path.name for path in prev_image_paths ]

        for key in list( cached_images.keys() ):
            if key not in prev_image_paths_names and \
               key not in next_image_paths_names:
                cached_images.pop(key)

        for paths in [prev_image_paths, next_image_paths]:
            for path in paths:
                if path.name not in cached_images:
                    cached_images[path.name] = cv2_imread(str(path)) / 255.0

        if filepath is not None:
            dflimg = DFLIMG.load (filepath)

            if dflimg is None:
                io.log_err ("%s is not a dfl image file" % (filepath.name) )
                continue
            else:
                lmrks = dflimg.get_landmarks()
                ie_polys = IEPolys.load(dflimg.get_ie_polys())
                fanseg_mask = dflimg.get_fanseg_mask()

                if filepath.name in cached_images:
                    img = cached_images[filepath.name]
                else:
                    img = cached_images[filepath.name] = cv2_imread(str(filepath)) / 255.0

                if fanseg_mask is not None:
                    mask = fanseg_mask
                else:
                    if no_default_mask:
                        mask = np.zeros ( (target_wh,target_wh,3) )
                    else:
                        mask = LandmarksProcessor.get_image_hull_mask( img.shape, lmrks, eyebrows_expand_mod=eyebrows_expand_mod)
        else:
            img = np.zeros ( (target_wh,target_wh,3) )
            mask = np.ones ( (target_wh,target_wh,3) )
            ie_polys = None

        def get_status_lines_func():
            return ['Progress: %d / %d . Current file: %s' % (len(done_paths), image_paths_total, str(filepath.name) if filepath is not None else "end" ),
                    '[Left mouse button] - mark include mask.',
                    '[Right mouse button] - mark exclude mask.',
                    '[Middle mouse button] - finish current poly.',
                    '[Mouse wheel] - undo/redo poly or point. [+ctrl] - undo to begin/redo to end',
                    '[r] - applies edits made to last saved image.',
                    '[q] - prev image. [w] - skip and move to %s. [e] - save and move to %s. ' % (skipped_path.name, confirmed_path.name),
                    '[z] - prev image. [x] - skip. [c] - save. ',
                    'hold [shift] - speed up the frame counter by 10.',
                    '[-/+] - window zoom [esc] - quit',
                    ]

        try:
            ed = MaskEditor(img,
                            [ (done_images_types[name], cached_images[name]) for name in prev_image_paths_names ],
                            [ (0, cached_images[name]) for name in next_image_paths_names ],
                            mask, ie_polys, get_status_lines_func)
        except Exception as e:
            print(e)
            continue

        next = False
        while not next:
            io.process_messages(0.005)

            if jobs_count() == 0:
                for (x,y,ev,flags) in io.get_mouse_events(wnd_name):
                    x, y = int (x / zoom_factor), int(y / zoom_factor)
                    ed.set_mouse_pos(x, y)
                    if filepath is not None:
                        if ev == io.EVENT_LBUTTONDOWN:
                            ed.mask_point(1)
                        elif ev == io.EVENT_RBUTTONDOWN:
                            ed.mask_point(0)
                        elif ev == io.EVENT_MBUTTONDOWN:
                            ed.mask_finish()
                        elif ev == io.EVENT_MOUSEWHEEL:
                            if flags & 0x80000000 != 0:
                                if flags & 0x8 != 0:
                                    ed.undo_to_begin_point()
                                else:
                                    ed.undo_point()
                            else:
                                if flags & 0x8 != 0:
                                    ed.redo_to_end_point()
                                else:
                                    ed.redo_point()

                for key, chr_key, ctrl_pressed, alt_pressed, shift_pressed in io.get_key_events(wnd_name):
                    if chr_key == 'q' or chr_key == 'z':
                        do_prev_count = 1 if not shift_pressed else 10
                    elif chr_key == '-':
                        zoom_factor = np.clip (zoom_factor-0.1, 0.1, 4.0)
                        ed.set_screen_changed()
                    elif chr_key == '+':
                        zoom_factor = np.clip (zoom_factor+0.1, 0.1, 4.0)
                        ed.set_screen_changed()
                    elif key == 27: #esc
                        is_exit = True
                        next = True
                        break
                    elif filepath is not None:
                        if chr_key == 'e':
                            saved_ie_polys = ed.ie_polys
                            do_save_move_count = 1 if not shift_pressed else 10
                        elif chr_key == 'c':
                            saved_ie_polys = ed.ie_polys
                            do_save_count = 1 if not shift_pressed else 10
                        elif chr_key == 'w':
                            do_skip_move_count = 1 if not shift_pressed else 10
                        elif chr_key == 'x':
                            do_skip_count = 1 if not shift_pressed else 10
                        elif chr_key == 'r' and saved_ie_polys != None:
                            ed.set_ie_polys(saved_ie_polys)

            if do_prev_count > 0:
                do_prev_count -= 1
                if len(done_paths) > 0:
                    if filepath is not None:
                        image_paths.insert(0, filepath)

                    filepath = done_paths.pop(-1)
                    done_images_types[filepath.name] = 0

                    if filepath.parent != input_path:
                        new_filename_path = input_path / filepath.name
                        filepath.rename ( new_filename_path )
                        image_paths.insert(0, new_filename_path)
                    else:
                        image_paths.insert(0, filepath)

                    next = True
            elif filepath is not None:
                if do_save_move_count > 0:
                    do_save_move_count -= 1

                    ed.mask_finish()
                    dflimg.embed_and_set (str(filepath), ie_polys=ed.get_ie_polys(), eyebrows_expand_mod=eyebrows_expand_mod )

                    done_paths += [ confirmed_path / filepath.name ]
                    done_images_types[filepath.name] = 2
                    filepath.rename(done_paths[-1])

                    next = True
                elif do_save_count > 0:
                    do_save_count -= 1

                    ed.mask_finish()
                    dflimg.embed_and_set (str(filepath), ie_polys=ed.get_ie_polys(), eyebrows_expand_mod=eyebrows_expand_mod )

                    done_paths += [ filepath ]
                    done_images_types[filepath.name] = 2

                    next = True
                elif do_skip_move_count > 0:
                    do_skip_move_count -= 1

                    done_paths += [ skipped_path / filepath.name ]
                    done_images_types[filepath.name] = 1
                    filepath.rename(done_paths[-1])

                    next = True
                elif do_skip_count > 0:
                    do_skip_count -= 1

                    done_paths += [ filepath ]
                    done_images_types[filepath.name] = 1

                    next = True
            else:
                do_save_move_count = do_save_count = do_skip_move_count = do_skip_count = 0

            if jobs_count() == 0:
                if ed.switch_screen_changed():
                    screen = ed.make_screen()
                    if zoom_factor != 1.0:
                        h,w,c = screen.shape
                        screen = cv2.resize ( screen, ( int(w*zoom_factor), int(h*zoom_factor) ) )
                    io.show_image (wnd_name, screen )


        io.process_messages(0.005)

    io.destroy_all_windows()
Пример #16
0
def apply_celebamaskhq(input_dir):

    input_path = Path(input_dir)

    img_path = input_path / 'aligned'
    mask_path = input_path / 'mask'

    if not img_path.exists():
        raise ValueError(
            f'{str(img_path)} directory not found. Please ensure it exists.')

    CelebAMASKHQSubprocessor(pathex.get_image_paths(img_path),
                             pathex.get_image_paths(mask_path,
                                                    subdirs=True)).run()

    return

    paths_to_extract = []
    for filename in io.progress_bar_generator(pathex.get_image_paths(img_path),
                                              desc="Processing"):
        filepath = Path(filename)
        dflimg = DFLIMG.load(filepath)

        if dflimg is not None:
            paths_to_extract.append(filepath)

        image_to_face_mat = dflimg.get_image_to_face_mat()
        src_filename = dflimg.get_source_filename()

        #img = cv2_imread(filename)
        h, w, c = dflimg.get_shape()

        fanseg_mask = LandmarksProcessor.get_image_hull_mask(
            (h, w, c), dflimg.get_landmarks())

        idx_name = '%.5d' % int(src_filename.split('.')[0])
        idx_files = [x for x in masks_files if idx_name in x]

        skin_files = [x for x in idx_files if 'skin' in x]
        eye_glass_files = [x for x in idx_files if 'eye_g' in x]

        for files, is_invert in [(skin_files, False), (eye_glass_files, True)]:

            if len(files) > 0:
                mask = cv2_imread(files[0])
                mask = mask[..., 0]
                mask[mask == 255] = 1
                mask = mask.astype(np.float32)
                mask = cv2.resize(mask, (1024, 1024))
                mask = cv2.warpAffine(mask, image_to_face_mat, (w, h),
                                      cv2.INTER_LANCZOS4)

                if not is_invert:
                    fanseg_mask *= mask[..., None]
                else:
                    fanseg_mask *= (1 - mask[..., None])

        #cv2.imshow("", (fanseg_mask*255).astype(np.uint8) )
        #cv2.waitKey(0)

        dflimg.embed_and_set(filename, fanseg_mask=fanseg_mask)
Пример #17
0
def sort_by_hist(input_path):
    io.log_info ("Sorting by histogram similarity...")
    img_list = HistSsimSubprocessor(pathex.get_image_paths(input_path)).run()
    return img_list, []
Пример #18
0
def extract_umd_csv(input_file_csv,
                    image_size=256,
                    face_type='full_face',
                    device_args={}):

    #extract faces from umdfaces.io dataset csv file with pitch,yaw,roll info.
    multi_gpu = device_args.get('multi_gpu', False)
    cpu_only = device_args.get('cpu_only', False)
    face_type = FaceType.fromString(face_type)

    input_file_csv_path = Path(input_file_csv)
    if not input_file_csv_path.exists():
        raise ValueError('input_file_csv not found. Please ensure it exists.')

    input_file_csv_root_path = input_file_csv_path.parent
    output_path = input_file_csv_path.parent / ('aligned_' +
                                                input_file_csv_path.name)

    io.log_info("Output dir is %s." % (str(output_path)))

    if output_path.exists():
        output_images_paths = pathex.get_image_paths(output_path)
        if len(output_images_paths) > 0:
            io.input_bool(
                "WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue."
                % (str(output_path)), False)
            for filename in output_images_paths:
                Path(filename).unlink()
    else:
        output_path.mkdir(parents=True, exist_ok=True)

    try:
        with open(str(input_file_csv_path), 'r') as f:
            csv_file = f.read()
    except Exception as e:
        io.log_err("Unable to open or read file " + str(input_file_csv_path) +
                   ": " + str(e))
        return

    strings = csv_file.split('\n')
    keys = strings[0].split(',')
    keys_len = len(keys)
    csv_data = []
    for i in range(1, len(strings)):
        values = strings[i].split(',')
        if keys_len != len(values):
            io.log_err("Wrong string in csv file, skipping.")
            continue

        csv_data += [{keys[n]: values[n] for n in range(keys_len)}]

    data = []
    for d in csv_data:
        filename = input_file_csv_root_path / d['FILE']

        x, y, w, h = float(d['FACE_X']), float(d['FACE_Y']), float(
            d['FACE_WIDTH']), float(d['FACE_HEIGHT'])

        data += [
            ExtractSubprocessor.Data(filename=filename,
                                     rects=[[x, y, x + w, y + h]])
        ]

    images_found = len(data)
    faces_detected = 0
    if len(data) > 0:
        io.log_info("Performing 2nd pass from csv file...")
        data = ExtractSubprocessor(data,
                                   'landmarks',
                                   multi_gpu=multi_gpu,
                                   cpu_only=cpu_only).run()

        io.log_info('Performing 3rd pass...')
        data = ExtractSubprocessor(data,
                                   'final',
                                   image_size,
                                   face_type,
                                   None,
                                   multi_gpu=multi_gpu,
                                   cpu_only=cpu_only,
                                   manual=False,
                                   final_output_path=output_path).run()
        faces_detected += sum([d.faces_detected for d in data])

    io.log_info('-------------------------')
    io.log_info('Images found:        %d' % (images_found))
    io.log_info('Faces detected:      %d' % (faces_detected))
    io.log_info('-------------------------')
Пример #19
0
def sort_best(input_path, faster=False):
    target_count = io.input_int ("Target number of faces?", 2000)

    io.log_info ("Performing sort by best faces.")
    if faster:
        io.log_info("Using faster algorithm. Faces will be sorted by source-rect-area instead of blur.")

    img_list, trash_img_list = FinalLoaderSubprocessor( pathex.get_image_paths(input_path), faster ).run()
    final_img_list = []

    grads = 128
    imgs_per_grad = round (target_count / grads)

    #instead of math.pi / 2, using -1.2,+1.2 because actually maximum yaw for 2DFAN landmarks are -1.2+1.2
    grads_space = np.linspace (-1.2, 1.2,grads)

    yaws_sample_list = [None]*grads
    for g in io.progress_bar_generator ( range(grads), "Sort by yaw"):
        yaw = grads_space[g]
        next_yaw = grads_space[g+1] if g < grads-1 else yaw

        yaw_samples = []
        for img in img_list:
            s_yaw = -img[3]
            if (g == 0          and s_yaw < next_yaw) or \
               (g < grads-1     and s_yaw >= yaw and s_yaw < next_yaw) or \
               (g == grads-1    and s_yaw >= yaw):
                yaw_samples += [ img ]
        if len(yaw_samples) > 0:
            yaws_sample_list[g] = yaw_samples

    total_lack = 0
    for g in io.progress_bar_generator ( range(grads), ""):
        img_list = yaws_sample_list[g]
        img_list_len = len(img_list) if img_list is not None else 0

        lack = imgs_per_grad - img_list_len
        total_lack += max(lack, 0)

    imgs_per_grad += total_lack // grads


    sharpned_imgs_per_grad = imgs_per_grad*10
    for g in io.progress_bar_generator ( range (grads), "Sort by blur"):
        img_list = yaws_sample_list[g]
        if img_list is None:
            continue

        img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)

        if len(img_list) > sharpned_imgs_per_grad:
            trash_img_list += img_list[sharpned_imgs_per_grad:]
            img_list = img_list[0:sharpned_imgs_per_grad]

        yaws_sample_list[g] = img_list


    yaw_pitch_sample_list = [None]*grads
    pitch_grads = imgs_per_grad

    for g in io.progress_bar_generator ( range (grads), "Sort by pitch"):
        img_list = yaws_sample_list[g]
        if img_list is None:
            continue

        pitch_sample_list = [None]*pitch_grads

        grads_space = np.linspace (-math.pi / 2,math.pi / 2, pitch_grads )

        for pg in range (pitch_grads):

            pitch = grads_space[pg]
            next_pitch = grads_space[pg+1] if pg < pitch_grads-1 else pitch

            pitch_samples = []
            for img in img_list:
                s_pitch = img[4]
                if (pg == 0                and s_pitch < next_pitch) or \
                   (pg < pitch_grads-1     and s_pitch >= pitch and s_pitch < next_pitch) or \
                   (pg == pitch_grads-1    and s_pitch >= pitch):
                    pitch_samples += [ img ]

            if len(pitch_samples) > 0:
                pitch_sample_list[pg] = pitch_samples
        yaw_pitch_sample_list[g] = pitch_sample_list

    yaw_pitch_sample_list = FinalHistDissimSubprocessor(yaw_pitch_sample_list).run()

    for g in io.progress_bar_generator (range (grads), "Fetching the best"):
        pitch_sample_list = yaw_pitch_sample_list[g]
        if pitch_sample_list is None:
            continue

        n = imgs_per_grad

        while n > 0:
            n_prev = n
            for pg in range(pitch_grads):
                img_list = pitch_sample_list[pg]
                if img_list is None:
                    continue
                final_img_list += [ img_list.pop(0) ]
                if len(img_list) == 0:
                    pitch_sample_list[pg] = None
                n -= 1
                if n == 0:
                    break
            if n_prev == n:
                break

        for pg in range(pitch_grads):
            img_list = pitch_sample_list[pg]
            if img_list is None:
                continue
            trash_img_list += img_list

    return final_img_list, trash_img_list
Пример #20
0
    def __init__(self,
                 is_interactive,
                 merger_session_filepath,
                 predictor_func,
                 predictor_input_shape,
                 face_enhancer_func,
                 xseg_256_extract_func,
                 merger_config,
                 frames,
                 frames_root_path,
                 output_path,
                 output_mask_path,
                 model_iter,
                 subprocess_count=4,
                 src_src=False):
        if len(frames) == 0:
            raise ValueError("len (frames) == 0")

        super().__init__('Merger',
                         InteractiveMergerSubprocessor.Cli,
                         io_loop_sleep_time=0.001)

        self.is_interactive = is_interactive
        self.merger_session_filepath = Path(merger_session_filepath)
        self.merger_config = merger_config

        self.predictor_func = predictor_func
        self.predictor_input_shape = predictor_input_shape

        self.face_enhancer_func = face_enhancer_func
        self.xseg_256_extract_func = xseg_256_extract_func

        self.frames_root_path = frames_root_path
        self.output_path = output_path
        self.output_mask_path = output_mask_path
        self.model_iter = model_iter

        self.prefetch_frame_count = self.process_count = subprocess_count

        self.src_src = src_src

        session_data = None
        if self.is_interactive and self.merger_session_filepath.exists():
            io.input_skip_pending()
            if io.input_bool("Use saved session?", True):
                try:
                    with open(str(self.merger_session_filepath), "rb") as f:
                        session_data = pickle.loads(f.read())

                except Exception as e:
                    pass

        rewind_to_frame_idx = None
        self.frames = frames
        self.frames_idxs = [*range(len(self.frames))]
        self.frames_done_idxs = []

        if self.is_interactive and session_data is not None:
            # Loaded session data, check it
            s_frames = session_data.get('frames', None)
            s_frames_idxs = session_data.get('frames_idxs', None)
            s_frames_done_idxs = session_data.get('frames_done_idxs', None)
            s_model_iter = session_data.get('model_iter', None)

            frames_equal = (s_frames is not None) and \
                           (s_frames_idxs is not None) and \
                           (s_frames_done_idxs is not None) and \
                           (s_model_iter is not None) and \
                           (len(frames) == len(s_frames)) # frames count must match

            if frames_equal:
                for i in range(len(frames)):
                    frame = frames[i]
                    s_frame = s_frames[i]
                    # frames filenames must match
                    if frame.frame_info.filepath.name != s_frame.frame_info.filepath.name:
                        frames_equal = False
                    if not frames_equal:
                        break

            if frames_equal:
                io.log_info('Using saved session from ' +
                            '/'.join(self.merger_session_filepath.parts[-2:]))

                for frame in s_frames:
                    if frame.cfg is not None:
                        # recreate MergerConfig class using constructor with get_config() as dict params
                        # so if any new param will be added, old merger session will work properly
                        frame.cfg = frame.cfg.__class__(
                            **frame.cfg.get_config())

                self.frames = s_frames
                self.frames_idxs = s_frames_idxs
                self.frames_done_idxs = s_frames_done_idxs

                if self.model_iter != s_model_iter:
                    # model was more trained, recompute all frames
                    rewind_to_frame_idx = -1
                    for frame in self.frames:
                        frame.is_done = False
                elif len(self.frames_idxs) == 0:
                    # all frames are done?
                    rewind_to_frame_idx = -1

                if len(self.frames_idxs) != 0:
                    cur_frame = self.frames[self.frames_idxs[0]]
                    cur_frame.is_shown = False

            if not frames_equal:
                session_data = None

        if session_data is None:
            for filename in pathex.get_image_paths(
                    self.output_path):  #remove all images in output_path
                Path(filename).unlink()

            for filename in pathex.get_image_paths(
                    self.output_mask_path
            ):  #remove all images in output_mask_path
                Path(filename).unlink()

            frames[0].cfg = self.merger_config.copy()

        for i in range(len(self.frames)):
            frame = self.frames[i]
            frame.idx = i
            frame.output_filepath = self.output_path / (
                frame.frame_info.filepath.stem + '.png')
            frame.output_mask_filepath = self.output_mask_path / (
                frame.frame_info.filepath.stem + '.png')

            if not frame.output_filepath.exists() or \
               not frame.output_mask_filepath.exists():
                # if some frame does not exist, recompute and rewind
                frame.is_done = False
                frame.is_shown = False

                if rewind_to_frame_idx is None:
                    rewind_to_frame_idx = i - 1
                else:
                    rewind_to_frame_idx = min(rewind_to_frame_idx, i - 1)

        if rewind_to_frame_idx is not None:
            while len(self.frames_done_idxs) > 0:
                if self.frames_done_idxs[-1] > rewind_to_frame_idx:
                    prev_frame = self.frames[self.frames_done_idxs.pop()]
                    self.frames_idxs.insert(0, prev_frame.idx)
                else:
                    break
Пример #21
0
    def __init__(self,
                 is_training=False,
                 saved_models_path=None,
                 training_data_src_path=None,
                 training_data_dst_path=None,
                 pretraining_data_path=None,
                 pretrained_model_path=None,
                 no_preview=False,
                 force_model_name=None,
                 force_gpu_idxs=None,
                 cpu_only=False,
                 debug=False,
                 force_model_class_name=None,
                 silent_start=False,
                 **kwargs):
        self.is_training = is_training
        self.saved_models_path = saved_models_path
        self.training_data_src_path = training_data_src_path
        self.training_data_dst_path = training_data_dst_path
        self.pretraining_data_path = pretraining_data_path
        self.pretrained_model_path = pretrained_model_path
        self.no_preview = no_preview
        self.debug = debug

        self.model_class_name = model_class_name = Path(
            inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]

        if force_model_class_name is None:
            if force_model_name is not None:
                self.model_name = force_model_name
            else:
                while True:
                    # gather all model dat files
                    saved_models_names = []
                    for filepath in pathex.get_file_paths(saved_models_path):
                        filepath_name = filepath.name
                        if filepath_name.endswith(
                                f'{model_class_name}_data.dat'):
                            saved_models_names += [
                                (filepath_name.split('_')[0],
                                 os.path.getmtime(filepath))
                            ]

                    # sort by modified datetime
                    saved_models_names = sorted(saved_models_names,
                                                key=operator.itemgetter(1),
                                                reverse=True)
                    saved_models_names = [x[0] for x in saved_models_names]

                    if len(saved_models_names) != 0:
                        if silent_start:
                            self.model_name = saved_models_names[0]
                            io.log_info(
                                f'Silent start: choosed model "{self.model_name}"'
                            )
                        else:
                            io.log_info(
                                "Choose one of saved models, or enter a name to create a new model."
                            )
                            io.log_info("[r] : rename")
                            io.log_info("[d] : delete")
                            io.log_info("")
                            for i, model_name in enumerate(saved_models_names):
                                s = f"[{i}] : {model_name} "
                                if i == 0:
                                    s += "- latest"
                                io.log_info(s)

                            inp = io.input_str(f"",
                                               "0",
                                               show_default_value=False)
                            model_idx = -1
                            try:
                                model_idx = np.clip(
                                    int(inp), 0,
                                    len(saved_models_names) - 1)
                            except:
                                pass

                            if model_idx == -1:
                                if len(inp) == 1:
                                    is_rename = inp[0] == 'r'
                                    is_delete = inp[0] == 'd'

                                    if is_rename or is_delete:
                                        if len(saved_models_names) != 0:

                                            if is_rename:
                                                name = io.input_str(
                                                    f"Enter the name of the model you want to rename"
                                                )
                                            elif is_delete:
                                                name = io.input_str(
                                                    f"Enter the name of the model you want to delete"
                                                )

                                            if name in saved_models_names:

                                                if is_rename:
                                                    new_model_name = io.input_str(
                                                        f"Enter new name of the model"
                                                    )

                                                for filepath in pathex.get_paths(
                                                        saved_models_path):
                                                    filepath_name = filepath.name

                                                    model_filename, remain_filename = filepath_name.split(
                                                        '_', 1)
                                                    if model_filename == name:

                                                        if is_rename:
                                                            new_filepath = filepath.parent / (
                                                                new_model_name
                                                                + '_' +
                                                                remain_filename
                                                            )
                                                            filepath.rename(
                                                                new_filepath)
                                                        elif is_delete:
                                                            filepath.unlink()
                                        continue

                                self.model_name = inp
                            else:
                                self.model_name = saved_models_names[model_idx]

                    else:
                        self.model_name = io.input_str(
                            f"No saved models found. Enter a name of a new model",
                            "new")
                        self.model_name = self.model_name.replace('_', ' ')
                    break

            self.model_name = self.model_name + '_' + self.model_class_name
        else:
            self.model_name = force_model_class_name

        self.iter = 0
        self.options = {}
        self.loss_history = []
        self.sample_for_preview = None
        self.choosed_gpu_indexes = None

        model_data = {}
        self.model_data_path = Path(
            self.get_strpath_storage_for_file('data.dat'))
        if self.model_data_path.exists():
            io.log_info(f"Loading {self.model_name} model...")
            model_data = pickle.loads(self.model_data_path.read_bytes())
            self.iter = model_data.get('iter', 0)
            if self.iter != 0:
                self.options = model_data['options']
                self.loss_history = model_data.get('loss_history', [])
                self.sample_for_preview = model_data.get(
                    'sample_for_preview', None)
                self.choosed_gpu_indexes = model_data.get(
                    'choosed_gpu_indexes', None)

        if self.is_first_run():
            io.log_info("\nModel first run.")

        if silent_start:
            self.device_config = nn.DeviceConfig.BestGPU()
            io.log_info(
                f"Silent start: choosed device {'CPU' if self.device_config.cpu_only else self.device_config.devices[0].name}"
            )
        else:
            self.device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_best_multi_gpu=True)) \
                                if not cpu_only else nn.DeviceConfig.CPU()

        nn.initialize(self.device_config)

        ####
        self.default_options_path = saved_models_path / f'{self.model_class_name}_default_options.dat'
        self.default_options = {}
        if self.default_options_path.exists():
            try:
                self.default_options = pickle.loads(
                    self.default_options_path.read_bytes())
            except:
                pass

        self.choose_preview_history = False
        self.batch_size = self.load_or_def_option(
            'batch_size', int(params['suggest_batch_size']))
        #####

        io.input_skip_pending()
        self.on_initialize_options()

        if self.is_first_run():
            # save as default options only for first run model initialize
            self.default_options_path.write_bytes(pickle.dumps(self.options))

        self.autobackup_hour = self.options.get('autobackup_hour', 0)
        self.write_preview_history = self.options.get('write_preview_history',
                                                      False)
        self.target_iter = self.options.get('target_iter', 0)
        self.random_flip = self.options.get('random_flip', True)

        self.on_initialize()
        self.options['batch_size'] = self.batch_size

        if self.is_training:
            self.preview_history_path = self.saved_models_path / (
                f'{self.get_model_name()}_history')
            self.autobackups_path = self.saved_models_path / (
                f'{self.get_model_name()}_autobackups')

            if self.write_preview_history or io.is_colab():
                if not self.preview_history_path.exists():
                    self.preview_history_path.mkdir(exist_ok=True)
                else:
                    if self.iter == 0:
                        for filename in pathex.get_image_paths(
                                self.preview_history_path):
                            Path(filename).unlink()

            if self.generator_list is None:
                raise ValueError('You didnt set_training_data_generators()')
            else:
                for i, generator in enumerate(self.generator_list):
                    if not isinstance(generator, SampleGeneratorBase):
                        raise ValueError(
                            'training data generator is not subclass of SampleGeneratorBase'
                        )

            self.update_sample_for_preview(
                choose_preview_history=self.choose_preview_history)

            if self.autobackup_hour != 0:
                self.autobackup_start_time = time.time()

                if not self.autobackups_path.exists():
                    self.autobackups_path.mkdir(exist_ok=True)

        io.log_info(self.get_summary_text())
Пример #22
0
 def generator():
     for filepath in io.progress_bar_generator(
             pathex.get_image_paths(aligned_path),
             "Collecting alignments"):
         filepath = Path(filepath)
         yield filepath, DFLIMG.load(filepath)
Пример #23
0
def denoise_image_sequence(input_dir, ext=None, factor=None):
    input_path = Path(input_dir)

    if not input_path.exists():
        io.log_err("input_dir not found.")
        return

    image_paths = [
        Path(filepath) for filepath in pathex.get_image_paths(input_path)
    ]

    # Check extension of all images
    image_paths_suffix = None
    for filepath in image_paths:
        if image_paths_suffix is None:
            image_paths_suffix = filepath.suffix
        else:
            if filepath.suffix != image_paths_suffix:
                io.log_err(
                    f"All images in {input_path.name} should be with the same extension."
                )
                return

    if factor is None:
        factor = np.clip(io.input_int("Denoise factor?", 7, add_info="1-20"),
                         1, 20)

    # Rename to temporary filenames
    for i, filepath in io.progress_bar_generator(enumerate(image_paths),
                                                 "Renaming",
                                                 leave=False):
        src = filepath
        dst = filepath.parent / (f'{i+1:06}_{filepath.name}')
        try:
            src.rename(dst)
        except:
            io.log_error('fail to rename %s' % (src.name))
            return

    # Rename to sequental filenames
    for i, filepath in io.progress_bar_generator(enumerate(image_paths),
                                                 "Renaming",
                                                 leave=False):

        src = filepath.parent / (f'{i+1:06}_{filepath.name}')
        dst = filepath.parent / (f'{i+1:06}{filepath.suffix}')
        try:
            src.rename(dst)
        except:
            io.log_error('fail to rename %s' % (src.name))
            return

    # Process image sequence in ffmpeg
    kwargs = {}
    if image_paths_suffix == '.jpg':
        kwargs.update({'q:v': '2'})

    job = (ffmpeg.input(str(input_path / ('%6d' + image_paths_suffix))).filter(
        "hqdn3d", factor, factor, 5,
        5).output(str(input_path / ('%6d' + image_paths_suffix)), **kwargs))

    try:
        job = job.run()
    except:
        io.log_err("ffmpeg fail, job commandline:" + str(job.compile()))

    # Rename to temporary filenames
    for i, filepath in io.progress_bar_generator(enumerate(image_paths),
                                                 "Renaming",
                                                 leave=False):
        src = filepath.parent / (f'{i+1:06}{filepath.suffix}')
        dst = filepath.parent / (f'{i+1:06}_{filepath.name}')
        try:
            src.rename(dst)
        except:
            io.log_error('fail to rename %s' % (src.name))
            return

    # Rename to initial filenames
    for i, filepath in io.progress_bar_generator(enumerate(image_paths),
                                                 "Renaming",
                                                 leave=False):
        src = filepath.parent / (f'{i+1:06}_{filepath.name}')
        dst = filepath

        try:
            src.rename(dst)
        except:
            io.log_error('fail to rename %s' % (src.name))
            return
Пример #24
0
    def __init__(self,
                 root_path,
                 debug=False,
                 batch_size=1,
                 resolution=256,
                 generators_count=4,
                 data_format="NHWC",
                 **kwargs):

        super().__init__(debug, batch_size)
        self.initialized = False

        dataset_path = root_path / 'CelebAMask-HQ'
        if not dataset_path.exists():
            raise ValueError(f'Unable to find {dataset_path}')

        images_path = dataset_path / 'CelebA-HQ-img'
        if not images_path.exists():
            raise ValueError(f'Unable to find {images_path}')

        masks_path = dataset_path / 'CelebAMask-HQ-mask-anno'
        if not masks_path.exists():
            raise ValueError(f'Unable to find {masks_path}')

        if self.debug:
            self.generators_count = 1
        else:
            self.generators_count = max(1, generators_count)

        source_images_paths = pathex.get_image_paths(images_path,
                                                     return_Path_class=True)
        source_images_paths_len = len(source_images_paths)
        mask_images_paths = pathex.get_image_paths(masks_path,
                                                   subdirs=True,
                                                   return_Path_class=True)

        if source_images_paths_len == 0 or len(mask_images_paths) == 0:
            raise ValueError('No training data provided.')

        mask_file_id_hash = {}

        for filepath in io.progress_bar_generator(mask_images_paths,
                                                  "Loading"):
            stem = filepath.stem

            file_id, mask_type = stem.split('_', 1)
            file_id = int(file_id)

            if file_id not in mask_file_id_hash:
                mask_file_id_hash[file_id] = {}

            mask_file_id_hash[file_id][MaskType_from_name[mask_type]] = str(
                filepath.relative_to(masks_path))

        source_file_id_set = set()

        for filepath in source_images_paths:
            stem = filepath.stem

            file_id = int(stem)
            source_file_id_set.update({file_id})

        for k in mask_file_id_hash.keys():
            if k not in source_file_id_set:
                io.log_err(f"Corrupted dataset: {k} not in {images_path}")

        if self.debug:
            self.generators = [
                ThisThreadGenerator(
                    self.batch_func,
                    (images_path, masks_path, mask_file_id_hash, data_format))
            ]
        else:
            self.generators = [SubprocessGenerator ( self.batch_func, (images_path, masks_path, mask_file_id_hash, data_format), start_now=False ) \
                               for i in range(self.generators_count) ]

            SubprocessGenerator.start_in_parallel(self.generators)

        self.generator_counter = -1

        self.initialized = True