def se_resnet34(num_classes=1_000): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBasicBlock, [3, 4, 6, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
def se_resnet152(num_classes=1_000): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 8, 36, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBasicBlock, [3, 4, 6, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet50(num_classes=1_000, pretrained=False): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) if pretrained: model.load_state_dict(load_state_dict_from_url( "https://github.com/moskomule/senet.pytorch/releases/download/archive/seresnet50-60a8950a85b2b.pkl")) return model def se_resnet101(num_classes=1_000): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 4, 23, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model