Пример #1
0
 def doInit(self, use_coeff_filter=True):
     try:
         facenet_graph = tf_graph.FaceGraph()
         self.embs_extractor = face_extractor.FacenetExtractor(
             facenet_graph, model_path=Config.Model.FACENET_DIR)
         self.use_coeff_filter = use_coeff_filter
         if use_coeff_filter:
             coeff_graph = tf_graph.FaceGraph()
             self.coeff_extractor = face_extractor.FacenetExtractor(
                 coeff_graph, model_path=Config.Model.COEFF_DIR)
     except:
         logger.exception("CUDA out off memory", exc_info=True)
     print(self.name, '=' * 10)
 def init(self):
     self.bind_dir = os.environ.get('BIND_DIR', '')
     # below is for mask_glass_classification
     self.gm_face_detector = face_detector.MTCNNDetector(
         tf_graph.FaceGraph())
     self.gm_preprocessor = preprocess.Preprocessor(
         algs=preprocess.normalization)
     self.gm_glasses_classifier = mask_glasses.GlassesClassifier()
     self.gm_mask_classifier = mask_glasses.MaskClassifier()
Пример #3
0
 def doInit(self):
     face_graph = tf_graph.FaceGraph()
     try:
         self.extractor = face_extractor.FacenetExtractor(
             face_graph, model_path=Config.Model.COEFF_DIR)
     except:
         logger.exception("CUDA out off memory", exc_info=True)
     self.preprocessor = preprocess.Preprocessor()
     print(self.name, '=' * 10)
Пример #4
0
    def doInit(self):
        face_graph = tf_graph.FaceGraph()
        try:
            self.extractor = face_extractor.ArcFaceExtractor(
                model_path=Config.Model.ARCFACE_DIR)

        except:
            logger.exception("CUDA out off memory", exc_info=True)

        print(self.name, '=' * 10)
Пример #5
0
 def doInit(self):
     face_graph = tf_graph.FaceGraph()
     try:
         self.face_detector = face_detector.MTCNNDetector(
             face_graph, scale_factor=Config.MTCNN.SCALE_FACTOR)
     except:
         logger.exception("CUDA device out of memory")
     super(FaceDetectWorker, self).__init__()
     self.face_count = 0
     self.detected_frame_count = 0
     print(self.name, '=' * 10)
Пример #6
0
 def init(self):
     self.pipeline = self.build_pipeline()
     self.mtcnn_detector = face_detector.MTCNNDetector(tf_graph.FaceGraph())
     pass
Пример #7
0
    def run_demo(self):
        '''
        This is main function
        '''

        # TODO: Move this to pipeline
        _face_detector = face_detector.MTCNNDetector(tf_graph.FaceGraph())
        _preprocessor = preprocess.Preprocessor(algs=preprocess.normalization)
        glasses_classifier = mask_glasses.GlassesClassifier()
        mask_classifier = mask_glasses.MaskClassifier()
        waiting_images = dict_and_list.WaitingImageQueue(2)
        result_list = dict_and_list.EmbsDict(4)

        print('Begin')
        retry = 0
        frame_counter = 0
        while True:
            frame, client_id = self.frame_reader.next_frame()
            if frame is None:
                retry += 1
                print('Retry %s times' % retry)

                # TODO: a bang want this to run forever, maybe remove in the furture
                #if retry >= DemoGlassesMaskServer.MAX_RETRY:
                #    break
                continue

            # TODO: Try to convert to pipeline
            frame_counter += 1
            if frame_counter % 2 == 0:
                # skip 1 frame every
                continue

            print('Frame', frame_counter, frame.shape)
            bbs, pts = _face_detector.detect_face(frame)
            if len(bbs) > 0:
                preprocessed_frame = _preprocessor.process(frame)
                waiting_images.put(client_id, preprocessed_frame)
                if waiting_images.has_enough(client_id):

                    images = waiting_images.get(client_id)
                    images = np.array(images)

                    has_masks = mask_classifier.is_wearing_mask(images)
                    has_glasses = glasses_classifier.is_wearing_glasses(images)

                    results = np.array([has_glasses, has_masks])
                    result_list.put(client_id, results.T)

                    matching_results = result_list.get(client_id)
                    has_glasses = self.find_most_common(matching_results[:, 0])
                    has_mask = self.find_most_common(matching_results[:, 1])
                    result = 'Has glasses %s, has mask %s' % (has_glasses,
                                                              has_mask)
                    print('Result', result)
                    self.image_socket.put_result(client_id=client_id,
                                                 status='successful',
                                                 face_name=result)
            else:
                self.image_socket.put_result(client_id=client_id,
                                             status='alert',
                                             face_name='Detecting')

        print("No more frame, stop")