def test_extract_hs2(): md = open_file("examples/nlu_retrieval_intents.md") result = _extract_h2s(md) assert result == [ "## intent: chitchat/what_should_i_buy", "## intent: how_should_i_spend_money", "## intent: chitchat/tell_me_a_joke", ]
reverse=True) if args.similarity: similar: List[List] = [[t, s] for t, s in outputs_with_sim if s >= float(args.similarity)] less_similar: List[List] = [[t, s] for t, s in outputs_with_sim if s < float(args.similarity)] print("Similar: ") print(tabulate(similar)) print("\nLess Similar: ") print(tabulate(less_similar)) if args.csv: # csv will always include similarity df = pd.DataFrame(outputs_with_sim, columns=["text", "similarity"]) df.to_csv(args.csv) if args.nlu: expanded_md = expand_nlu(open_file(args.nlu), params, model=model, verbose=args.verbose) print(expanded_md) # Stop the clock stop_perf = perf_counter() if args.verbose: print("Elapsed time:", abs(stop_perf - start_perf))
def test_open_file(): result = open_file("examples/nlu_no_entities.md") assert result is not None
def test_extract_nlu(): result = extract_nlu(open_file("examples/nlu_no_entities.md")) assert result is not None assert isinstance(result[0], tuple) assert isinstance(result[0][0], str) assert isinstance(result[0][1], list)
def test_extract_nlu_leading_line_breaks(): md = open_file("examples/nlu_leading_breaks.md") result = extract_nlu(md) assert any(result[0][1])