def test_create_feature_map(self): test_set = {"001": (2100, 3800, 2400, 4000), "003": (2400, 4700, 2600, 4850)} id = "003" roi = test_set[id] x1 = roi[0] y1 = roi[1] x2 = roi[2] y2 = roi[3] c = Params() c.load_config_file(JSON_PATH) imgCone = ImageCone(c, Open_Slide()) # 读取数字全扫描切片图像 tag = imgCone.open_slide("Tumor/Tumor_%s.tif" % id, 'Tumor/tumor_%s.xml' % id, "Tumor_%s" % id) # encoder = EncoderFactory(self._params, "idec", "AE_500_32", 16) encoder = EncoderFactory(c, "cae", "AE_500_32", 16) seg = Segmentation(c, imgCone, encoder) # global_seeds = seg.get_seeds_for_seg(x1, y1, x2, y2, 1.25) # print(global_seeds) f_map = seg.create_feature_map(x1, y1, x2, y2, 1.25, 5) print(f_map.shape) np.save("feature_map", f_map)
def test_create_superpixels(self): test_set = [("001", 2100, 3800, 2400, 4000), ("003", 2400, 4700, 2600, 4850)] id = 1 roi = test_set[id] slice_id = roi[0] x1 = roi[1] y1 = roi[2] x2 = roi[3] y2 = roi[4] c = Params() c.load_config_file(JSON_PATH) imgCone = ImageCone(c, Open_Slide()) # 读取数字全扫描切片图像 tag = imgCone.open_slide("Tumor/Tumor_%s.tif" % slice_id, 'Tumor/tumor_%s.xml' % slice_id, "Tumor_%s" % slice_id) seg = Segmentation(c, imgCone) f_map = seg.create_feature_map(x1, y1, x2, y2, 1.25, 5) label_map = seg.create_superpixels(f_map, 0.4, iter_num = 3) print(label_map.shape) np.save("label_map", label_map)
def test_extract_feature(self): c = Params() c.load_config_file(JSON_PATH) model_name = "cae" sample_name = "cifar10" ae = EncoderFactory(c, model_name, sample_name) ae.extract_feature(None)
def test_train_model5(self): c = Params() c.load_config_file(JSON_PATH) model_name = "aae" sample_name = "AE_500_32" ae = EncoderFactory(c, model_name, sample_name, z_dim=64) ae.train_adversarial_ae(batch_size=64, epochs=50)
def test_train_model3(self): c = Params() c.load_config_file(JSON_PATH) model_name = "ccae" sample_name = "cifar10" ae = EncoderFactory(c, model_name, sample_name) ae.train_ae(batch_size=64, epochs=50)
def test_train_idec(self): c = Params() c.load_config_file(JSON_PATH) model_name = "idec" sample_name = "AE_500_32" idec = EncoderFactory(c, model_name, sample_name, 64) idec.train_idec(batch_size=64, epochs=100)
def test_pack_samples_DSC_256(self): c = Params() c.load_config_file(JSON_PATH) pack = PatchPack(c) pack.create_train_test_data_DSC("P0619", [ "S2000_256_cancer", "S2000_256_normal", "S2000_256_normal2", "S2000_256_edgeinner", "S2000_256_edgeouter" ], "T2_P0619_4000_256", 40, 20)
def test_calc_patch_cancer_ratio(self): c = Params() c.load_config_file(JSON_PATH) pack = PatchPack(c) pack.calc_patch_cancer_ratio("P0619", [ "S2000_256_edgeinner", "S2000_256_edgeouter", "S2000_256_cancer", "S2000_256_normal", "S4000_256_edgeinner", "S4000_256_edgeouter", "S4000_256_cancer", "S4000_256_normal" ])
def test_eval_latent_weight(self): c = Params() c.load_config_file(JSON_PATH) model_name = "cae" sample_name = "AE_500_32" ae = EncoderFactory(c, model_name, sample_name, 64) result = ae.eval_latent_vector_loss(batch_size=64) np.save("latent_vector_loss_{}".format(model_name), result)
def test_no_plot_msg(params: Params) -> None: params.color_space = RGB # type: ignore params.plot = True # type: ignore captured_output = io.StringIO() sys.stdout = captured_output app.run(FDM, params) sys.stdout = sys.__stdout__ expected = 'Plotting is not implemented for operation fdm!\n' assert captured_output.getvalue() == expected os.remove(params.result_path)
def test_calc_latent_vector_weight(self): c = Params() c.load_config_file(JSON_PATH) model_name = "cae" sample_name = "AE_500_32" ae = EncoderFactory(c, model_name, sample_name, 16) loss = np.load("latent_vector_loss_{}.npy".format(model_name)) print(loss)
def test_02(self): c = Params() c.load_config_file(JSON_PATH) model_name = "cae" sample_name = "AE_500_32" ae = EncoderFactory(c, model_name, sample_name, 16) model = ae.create_initial_model() from torchsummary import summary summary(model, input_size=(3, 32, 32), device="cpu")
def test_read_patch_db(self): c = Params() c.load_config_file(JSON_PATH) patches_code = "P0619" root_path = c.PATCHS_ROOT_PATH[patches_code] data = np.load('{}/patch_mask_ratio.npy'.format(root_path), allow_pickle=True) patch_db = data[()] print(len(patch_db.values())) plt.hist(patch_db.values(), bins=20, range=(0., 1), log=True) plt.show()
def test_pack_samples_MSC(self): c = Params() c.load_config_file(JSON_PATH) pack = PatchPack(c) pack.create_train_test_data_MSC({ 10: "S1000", 20: "S2000", 40: "S4000" }, { "256_cancer": (1, 3), "256_edgeinner": (1, 2), "256_edgeouter": (0, 1), "256_normal": (0, 0), }, 0, 1, "T_NC2_msc_256")
def test_params_len() -> None: mapping_1 = {'a': 1, 'b': 2, 'c': 3} mapping_2 = {'a': 1, 'b': 2, 'c': 3} params_1 = Params(mapping_1) params_2 = Params(mapping_2) assert len(params_1) == len(params_2) assert len(params_1) == len(mapping_1) assert len(params_2) == len(mapping_2) mapping_2 = {'a': 1, 'b': 2, 'c': 3, 'd': 4} params_2 = Params(mapping_2) assert len(params_1) != len(params_2) assert len(params_2) == len(mapping_2)
def test_make_plot(color_space: str, image_channels: str, source_path: str, reference_path: str) -> None: params = Params( { 'color_space': color_space, 'channels': image_channels, 'match_proportion': 0.8, 'src_path': source_path, 'ref_path': reference_path } ) converter = build_cs_converter(params.color_space) source = read_image(params.src_path) reference = read_image(params.ref_path) source = converter.convert(source) reference = converter.convert(reference) channels = tuple(int(c) for c in params.channels.split(',')) hist_match = HistogramMatching(channels, params.match_proportion) result = hist_match(source, reference) file_name = os.path.join(TEST_DIR, 'histogram_matching_plot.png') images = hm_plot.Images(source, reference, result) hm_plot.make_plot(file_name, images, converter, params.color_space, params.channels) assert os.path.exists(file_name) is True os.remove(file_name)
def test_params_str() -> None: mapping = {'a': 10, 'b': 'abc'} params = Params(mapping) # dict is a hash table, so there is no order guarantee params_str_1 = 'a : 10\nb : abc\n' params_str_2 = 'b : abc\na : 10\n' assert str(params) == params_str_1 or str(params) == params_str_2
def test_extract_feature(self): c = Params() c.load_config_file(JSON_PATH) model_name = "densenet121" imgCone = ImageCone(c, Open_Slide()) # 读取数字全扫描切片图像 tag = imgCone.open_slide("Tumor/Tumor_004.tif", None, "Tumor_004") seeds = [(34816, 48960), (35200, 48640), (12800, 56832)] # C, C, S, fe = Transfer(c, model_name, None) # result = fe.extract_feature(imgCone, 20, 256, seeds, 2) result = fe.svm_predict_on_batch(imgCone, 20, 256, seeds, 2) print(result)
def test_pack_samples_2000_256(self): c = Params() c.load_config_file(JSON_PATH) pack = PatchPack(c) data_tag = pack.initialize_sample_tags_byMask("P0619", [ "S2000_256_cancer", "S2000_256_normal", "S2000_256_normal2", "S2000_256_edgeinner", "S2000_256_edgeouter" ]) # data_tag = pack.filtering(data_tag, filter_mask=["Tumor_033", "Tumor_034", # "Tumor_046","Tumor_054","Tumor_061"]) pack.create_train_test_data(data_tag, 0.95, 0.05, "S1_P0619_2000_256", need_balance=True)
def test_train_top_svm(self): MODEL_NAME = "densenet121" # SAMPLE_FIlENAME = "T_NC_500_128" # SAMPLE_FIlENAME = "T_NC_2000_256" SAMPLE_FIlENAME = "T_NC_4000_256" PATCH_TYPE = "4000_256" # PATCH_TYPE = "2000_256" # PATCH_TYPE = "500_128" train_file = "{}_{}_train_features.npz".format(MODEL_NAME, SAMPLE_FIlENAME) test_file = "{}_{}_test_features.npz".format(MODEL_NAME, SAMPLE_FIlENAME) c = Params() c.load_config_file(JSON_PATH) cnn = Transfer(c, MODEL_NAME, PATCH_TYPE) cnn.train_top_svm(train_file, test_file)
def test_params_dict(data_member_name: str) -> None: mapping_1 = {'a': 1, 'b': 2, 'c': 3} mapping_2 = {'a': 1, 'b': 2, 'c': 3} params_1 = Params(mapping_1) params_2 = Params(mapping_2) assert len(params_1.__dict__[data_member_name]) == \ len(params_2.__dict__[data_member_name]) assert params_1.__dict__[data_member_name] == \ params_2.__dict__[data_member_name] mapping_2 = {'a': 1, 'b': 2, 'c': 3, 'd': 4} params_2 = Params(mapping_2) assert len(params_1.__dict__[data_member_name]) != \ len(params_2.__dict__[data_member_name]) assert params_1.__dict__[data_member_name] != \ params_2.__dict__[data_member_name]
def fixture_params() -> Params: return Params({ 'color_space': GRAY, 'channels': '0,1,2', 'match_proportion': MATCH_FULL, 'verify_input': True, 'plot': False, 'source_path': MUNICH_1_PATH, 'reference_path': MUNICH_2_PATH, 'result_path': 'application_run_test.png' })
def test_show_sample_txt(self): c = Params() c.load_config_file( "D:/CloudSpace/WorkSpace/PatholImage/config/justin2.json") sample_txt = "{}/{}".format(c.PATCHS_ROOT_PATH, "S500_128_False_normal.txt") patch_path = c.PATCHS_ROOT_PATH filenames_list, labels_list = read_csv_file(patch_path, sample_txt) fig = plt.figure(figsize=(8, 10), dpi=100) for index, filename in enumerate(filenames_list): img = imread(filename) pos = index % 20 plt.subplot(4, 5, pos + 1) plt.imshow(img) plt.axis("off") if pos == 19: fig.tight_layout() # 调整整体空白 plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距 plt.show()
def test_compare_save_file(self): c = Params() c.load_config_file(JSON_PATH) import numpy as np filename = "densenet121_T_NC_2000_256_test_features.npz" data_path = "{}/data/pytorch/{}".format(c.PROJECT_ROOT, filename) D = np.load(data_path) test_features = D['arr_0'] test_label = D['arr_1'] data_path = "{}/data/keras/{}".format(c.PROJECT_ROOT, filename) D = np.load(data_path) test_features2 = D['arr_0'] test_label2 = D['arr_1'] d = (test_features - test_features2) mean = np.mean(d) std = np.std(d) print(mean, std) mean = np.mean(test_features) std = np.std(test_features) print(mean, std)
def test_operation_context_builder() -> None: params = Params({'color_space': RGB, 'channels': '0,1,2', 'match_proportion': 1.0, 'verify_input': True}) op_ctx = operation_context_builder.build_operation_context(HM, params) assert isinstance(op_ctx.operation, HistogramMatching) assert isinstance(op_ctx.converter, ColorSpaceConverter) op_ctx = operation_context_builder.build_operation_context(FDM, params) assert isinstance(op_ctx.operation, FeatureDistributionMatching) assert isinstance(op_ctx.converter, ColorSpaceConverter) with pytest.raises(ValueError): operation_context_builder.build_operation_context('1337', params)
def fixture_params() -> Params: mapping = {'param_1': 10, 'param_2': 'abc', 'param_3': 2.45} return Params(mapping)
def run(ctx: click.core.Context) -> None: """ Calls the main program with the parameters available in the context """ application.run(ctx.command.name, Params(ctx.obj))
def test_params_python_keyword() -> None: mapping = {'a': 1, 'b': 2, 'import': 3} with pytest.raises(NameError): assert Params(mapping)
def test_params_wrong_identifier() -> None: mapping = {'a': 1, 'b': 2, '3.14x': 3} with pytest.raises(NameError): assert Params(mapping)
def test_params_wrong_name_type() -> None: mapping = {'a': 1, 'b': 2, 3: 'xyz'} with pytest.raises(TypeError): assert Params(mapping) # type: ignore