Пример #1
0
def test_single_layer_example():
    batch_size, input_dim, output_dim = 2, 4, 2

    @mb.program(input_specs=[
        mb.TensorSpec(shape=(batch_size, input_dim)),
    ])
    def prog(x):
        # Weight
        W_val = (np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
                           0.9]).reshape(input_dim,
                                         output_dim).T.astype(np.float32))
        W = mb.const(val=W_val, mode="file_value", name="const_W")

        # bias
        b_val = np.array([-0.5, 0.5]).astype(np.float32)
        b = mb.const(val=b_val, mode="file_value", name="const_b")

        return mb.linear(x=x, weight=W, bias=b, name="lin")

    logging.info("prog:\n", prog)

    proto = converter._convert(prog, convert_from="mil", convert_to="nn_proto")

    feed_dict = {
        "x": np.random.rand(batch_size, input_dim).astype(np.float32),
    }
    model = models.MLModel(proto)
    if model is None:
        raise AssertionError

    if ct.utils._is_macos():
        prediction = model.predict(feed_dict)
        if len(prediction) != 1:
            raise AssertionError
Пример #2
0
def test_while_example():
    def body(a, b):
        return mb.add(x=a, y=b), b

    def cond(a, b):
        a_mean = mb.reduce_mean(x=a, axes=[0, 1])
        b_mean = mb.reduce_mean(x=b, axes=[0, 1])
        return mb.less(x=a_mean, y=b_mean)

    @mb.program(input_specs=[
        mb.TensorSpec(shape=(1, 2)),
        mb.TensorSpec(shape=(1, 2)),
    ])
    def prog(a, b):
        return mb.while_loop(_cond=cond, _body=body, loop_vars=(a, b))

    logging.info("prog:\n", prog)

    proto = converter._convert(prog, convert_from="mil", convert_to="nn_proto")

    feed_dict = {
        "a": np.random.rand(1, 2).astype(np.float32),
        "b": np.random.rand(1, 2).astype(np.float32),
    }
    model = models.MLModel(proto)
    if model is None:
        raise AssertionError

    if ct.utils._is_macos():
        prediction = model.predict(feed_dict)
        if len(prediction) != 2:
            raise AssertionError
Пример #3
0
    def test_tutorial():
        from coremltools.converters.mil import Builder as mb

        @mb.program(
            input_specs=[mb.TensorSpec(shape=(1, 100, 100, 3)),]
        )
        def prog(x):
            x = mb.relu(x=x, name="relu")
            x = mb.transpose(x=x, perm=[0, 3, 1, 2], name="transpose")
            x = mb.reduce_mean(x=x, axes=[2, 3], keep_dims=False, name="reduce")
            x = mb.log(x=x, name="log")
            y = mb.add(x=1, y=2)
            return x

        print("prog:\n", prog)

        # Convert and verify
        from coremltools.converters.mil.converter import _convert
        from coremltools import models

        proto = _convert(prog, convert_from="mil")

        model = models.MLModel(proto)

        # running predict() is only supported on macOS
        if ct.utils._is_macos():
            prediction = model.predict(
                {"x": np.random.rand(1, 100, 100, 3).astype(np.float32),}
            )
            assert len(prediction) == 1
Пример #4
0
    def test_fusion_with_image_full(self):
        @mb.program(input_specs=[mb.TensorSpec(shape=(10, 20, 30, 3))])
        def prog(x):
            x1 = mb.transpose(x=x, perm=[0, 3, 1, 2])
            x2 = mb.relu(x=x)
            x3 = mb.transpose(x=x2, perm=[0, 3, 1, 2])
            x4 = mb.add(x=x1, y=x3)
            return mb.relu(x=x4)

        proto = converter._convert(prog, inputs=[ImageType(name="x", shape=(10, 20, 30, 3), channel_first=False)], convert_from="mil", convert_to="nn_proto")
        model = models.MLModel(proto)
        assert model is not None
        assert len(model._spec.neuralNetwork.layers) == 3
Пример #5
0
def test_conv_example():
    batch, C_in, C_out, H, W = 2, 2, 3, 7, 10
    kH, kW = 3, 5
    img_shape, seq_shape = (batch, C_in, H, W), (batch, C_in, H)

    @mb.program(input_specs=[
        mb.TensorSpec(shape=img_shape),
        mb.TensorSpec(shape=seq_shape),
    ])
    def prog(img, seq):
        ## 2D convolution
        # Weight
        W_2d = np.random.rand(C_out, C_in, kH, kW).astype(np.float32)
        W_2d = mb.const(val=W_2d, mode="file_value", name="const_W")

        # Test 1: provide only required arguments.
        conv1 = mb.conv(x=img, weight=W_2d, pad_type="valid")
        logging.info("conv1 shape: {}".format(conv1.shape))

        # Test 2: stride > 1
        conv2 = mb.conv(x=img, weight=W_2d, pad_type="valid", strides=[2, 3])
        logging.info("conv2 shape: {}".format(conv2.shape))

        # Test 3: same padding
        conv3 = mb.conv(x=img, weight=W_2d, pad_type="same", strides=[2, 3])
        logging.info("conv3 shape: {}".format(conv3.shape))

        # Test max_pool
        pool1 = mb.max_pool(x=img,
                            kernel_sizes=[kH, kW],
                            pad_type="valid",
                            strides=[2, 3])
        logging.info("pool1 shape: {}".format(pool1.shape))

        # Test max_pool
        pool2 = mb.max_pool(x=img,
                            kernel_sizes=[kH, kW],
                            pad_type="same",
                            strides=[2, 3])
        logging.info("pool2 shape: {}".format(pool2.shape))

        ## 1D convolution
        W_1d = np.random.rand(C_out, C_in, kH).astype(np.float32)
        W_1d = mb.const(val=W_1d, mode="file_value", name="const_W_1d")
        logging.info("W_1d val: {}".format(W_1d.val))

        # Test 4: provide only required arguments for 1D.
        conv4 = mb.conv(x=seq, weight=W_1d, pad_type="valid")

        logging.info("conv4 shape: {}".format(conv4.shape))

        return conv1, conv2, conv3, pool1, pool2, conv4

    proto = converter._convert(prog, convert_from="mil", convert_to="nn_proto")

    feed_dict = {
        "img": np.random.rand(*img_shape).astype(np.float32),
        "seq": np.random.rand(*seq_shape).astype(np.float32),
    }
    model = models.MLModel(proto)
    if model is None:
        raise AssertionError

    if ct.utils._is_macos():
        prediction = model.predict(feed_dict)
        if len(prediction) != 6:
            raise AssertionError
Пример #6
0
import coremltools.models as core
import turicreate as tc

model_name = input('Model Name: ')
file_name = input('Name of training data: ')
author = input('Author: ')
license = input('License: ')
short_description = input('Short Description: ')

data = tc.SFrame(file_name)  # formatting our data to an SFrame

model = tc.sentence_classifier.create(data,
                                      'Sentiment',
                                      features=['SentimentText'])

model.save(model_name + '.model')

model.export_coreml(model_name + '.mlmodel')

mlmodel = core.MLModel(model_name + '.mlmodel')

mlmodel.author = author
mlmodel.license = license
mlmodel.short_description = short_description

mlmodel.save(model_name + '.mlmodel')