def test_generate(self): path_checkpoint='.' prefix_checkpoint='test' n_epochs=10 cor = Corgan() # dummy dataset n_gen = 500 n = 1000 m = 7 x = np.random.randint(low=0, high=2, size=(n,m)) model = cor.train(x=x, n_epochs_pretrain=10, n_epochs=10, path_checkpoint=path_checkpoint, prefix_checkpoint=prefix_checkpoint) x_synth = cor.generate(model = model, n_gen=n_gen) # clean up file_ckpt=os.path.join(path_checkpoint, prefix_checkpoint + ".model_epoch_%d.pth" % n_epochs) os.remove(file_ckpt) assert len(x_synth) == n_gen
def test_save_and_load(self): path_checkpoint='.' prefix_checkpoint='test' n_epochs=10 cor = Corgan() # dummy dataset n_gen = 500 n = 1000 m = 7 x = np.random.randint(low=0, high=2, size=(n,m)) model_saved = cor.train(x=x, n_epochs_pretrain=10, n_epochs=10, path_checkpoint=path_checkpoint, prefix_checkpoint=prefix_checkpoint) file = 'test.pkl' cor.save_obj(obj=model_saved, file_name=file) model_loaded = cor.load_obj(file) x_synth = cor.generate(model = model_loaded, n_gen=n_gen) # clean up file_ckpt=os.path.join(path_checkpoint, prefix_checkpoint + ".model_epoch_%d.pth" % n_epochs) os.remove(file_ckpt) os.remove(file) assert len(x_synth) == n_gen
model['header'] = obj_d['header'] syn.save_obj(model, outfile) elif args.task == 'generate': pre = Preprocessor(missing_value=args.missing_value_generate) outfile = args.outprefix_generate + '.csv' syn = Corgan() model = syn.load_obj(args.file_model) if model['parameter_dict']['model'] == 'corgan': syn = Corgan() elif model['parameter_dict']['model'] == 'ppgan': syn = Ppgan(debug=False, n_cpu=1) s = syn.generate(model, n_gen=args.generate_size) f = pre.restore_matrix(arr=s, meta=model['m'], header=model['header']) np.savetxt(fname=outfile, fmt='%s', X=f['x'], delimiter=',', header=','.join(f['header']), comments='') elif args.task == 'realism': rea = Realism() pre = Preprocessor(missing_value=args.missing_value_realism) r_trn = pre.read_file(args.file_realism_real_train) r_tst = pre.read_file(args.file_realism_real_test)