Пример #1
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Social Bayesian Personalized Ranking with Epinions dataset"""

import cornac
from cornac.data import Reader, GraphModule
from cornac.datasets import epinions
from cornac.eval_methods import RatioSplit

ratio_split = RatioSplit(data=epinions.load_data(Reader(bin_threshold=4.0)),
                         test_size=0.1,
                         rating_threshold=0.5,
                         exclude_unknowns=True,
                         verbose=True,
                         user_graph=GraphModule(data=epinions.load_trust()))

sbpr = cornac.models.SBPR(k=10,
                          max_iter=50,
                          learning_rate=0.001,
                          lambda_u=0.015,
                          lambda_v=0.025,
                          lambda_b=0.01,
                          verbose=True)
rec_10 = cornac.metrics.Recall(k=10)

cornac.Experiment(eval_method=ratio_split, models=[sbpr],
                  metrics=[rec_10]).run()
Пример #2
0
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Social Bayesian Personalized Ranking (SBPR) with Epinions dataset"""

import cornac
from cornac.data import Reader, GraphModality
from cornac.datasets import epinions
from cornac.eval_methods import RatioSplit

# SBPR integrates user social network into Bayesian Personalized Ranking.
# The necessary data can be loaded as follows
feedback = epinions.load_feedback(
    Reader(bin_threshold=4.0
           ))  # feedback is binarised (turned into implicit) using Reader.
trust = epinions.load_trust()

# Instantiate a GraphModality, it make it convenient to work with graph (network) auxiliary information
# For more details, please refer to the tutorial on how to work with auxiliary data
user_graph_modality = GraphModality(data=trust)

# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(data=feedback,
                         test_size=0.1,
                         rating_threshold=0.5,
                         exclude_unknowns=True,
                         verbose=True,
                         user_graph=user_graph_modality)

# Instantiate SBPR
sbpr = cornac.models.SBPR(k=10,
Пример #3
0
 def test_load_trust(self):
     # only run data download tests 20% of the time to speed up frequent testing
     random.seed(time.time())
     if random.random() > 0.8:
         self.assertEqual(len(epinions.load_trust()), 487183)
Пример #4
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Social Bayesian Personalized Ranking with Epinions dataset"""

import cornac
from cornac.data import Reader, GraphModality
from cornac.datasets import epinions
from cornac.eval_methods import RatioSplit

ratio_split = RatioSplit(data=epinions.load_data(Reader(bin_threshold=4.0)),
                         test_size=0.1,
                         rating_threshold=0.5,
                         exclude_unknowns=True,
                         verbose=True,
                         user_graph=GraphModality(data=epinions.load_trust()))

sbpr = cornac.models.SBPR(k=10,
                          max_iter=50,
                          learning_rate=0.001,
                          lambda_u=0.015,
                          lambda_v=0.025,
                          lambda_b=0.01,
                          verbose=True)
rec_10 = cornac.metrics.Recall(k=10)

cornac.Experiment(eval_method=ratio_split, models=[sbpr],
                  metrics=[rec_10]).run()