def edit(self, *args, **kwargs): """Delete or keep rows by subcorpus or by middle column text. >>> skipped = conc.edit(skip_entries=r'to_?match')""" from corpkit.editor import editor return editor(self, *args, **kwargs)
def edit(self, *args, **kwargs): """ Delete or keep rows by subcorpus or by middle column text. >>> skipped = conc.edit(skip_entries=r'to_?match') """ from corpkit.editor import editor return editor(self, *args, **kwargs)
def edit(self, *args, **kwargs): """Edit each value with :func:`~corpkit.interrogation.Interrogation.edit`. See :func:`~corpkit.interrogation.Interrogation.edit` for possible arguments. :returns: A :class:`corpkit.interrogation.Interrodict` """ from corpkit.editor import editor return editor(self, *args, **kwargs)
def multiquery(corpus, query, sort_by = 'total', quicksave = False): """Creates a named tuple for a list of named queries to count. Pass in something like: [[u'NPs in corpus', r'NP'], [u'VPs in corpus', r'VP']]""" import collections import os import pandas import pandas as pd from time import strftime, localtime from corpkit.interrogator import interrogator from corpkit.editor import editor if quicksave: savedir = 'data/saved_interrogations' if not quicksave.endswith('.p'): quicksave = quicksave + '.p' fullpath = os.path.join(savedir, quicksave) while os.path.isfile(fullpath): selection = raw_input("\nSave error: %s already exists in %s.\n\nPick a new name: " % (savename, savedir)) if not selection.endswith('.p'): selection = selection + '.p' fullpath = os.path.join(savedir, selection) results = [] for name, pattern in query: result = interrogator(corpus, 'count', pattern) result.totals.name = name # rename count results.append(result.totals) results = pd.concat(results, axis = 1) results = editor(results, sort_by = sort_by, print_info = False, keep_stats = False) time = strftime("%H:%M:%S", localtime()) print '%s: Finished! %d unique results, %d total.' % (time, len(results.results.columns), results.totals.sum()) if quicksave: from corpkit.other import save_result save_result(results, quicksave) return results
def interrogation_from_conclines(newdata): """ Make new interrogation result from its conc lines """ from collections import Counter from pandas import DataFrame from corpkit.editor import editor results = {} conc = newdata subcorpora = list(set(conc['c'])) for subcorpus in subcorpora: counted = Counter(list(conc[conc['c'] == subcorpus]['m'])) results[subcorpus] = counted the_big_dict = {} unique_results = set([item for sublist in list(results.values()) for item in sublist]) for word in unique_results: the_big_dict[word] = [subcorp_result[word] for name, subcorp_result \ in sorted(results.items(), key=lambda x: x[0])] # turn master dict into dataframe, sorted df = DataFrame(the_big_dict, index=sorted(results.keys())) df = editor(df, sort_by='total', print_info=False) df.concordance = conc return df
def interrogator(corpus, search='w', query='any', show='w', exclude=False, excludemode='any', searchmode='all', case_sensitive=False, save=False, subcorpora=False, just_metadata=False, skip_metadata=False, preserve_case=False, lemmatag=False, files_as_subcorpora=False, only_unique=False, only_format_match=True, multiprocess=False, spelling=False, regex_nonword_filter=r'[A-Za-z0-9]', gramsize=1, conc=False, maxconc=9999, window=None, no_closed=False, no_punct=True, discard=False, **kwargs): """ Interrogate corpus, corpora, subcorpus and file objects. See corpkit.interrogation.interrogate() for docstring """ conc = kwargs.get('do_concordancing', conc) quiet = kwargs.get('quiet', False) coref = kwargs.pop('coref', False) show_conc_metadata = kwargs.pop('show_conc_metadata', False) fsi_index = kwargs.pop('fsi_index', True) dep_type = kwargs.pop('dep_type', 'collapsed-ccprocessed-dependencies') nosubmode = subcorpora is None #todo: temporary #if getattr(corpus, '_dlist', False): # subcorpora = 'file' # store kwargs and locs locs = locals().copy() locs.update(kwargs) locs.pop('kwargs', None) import codecs import signal import os from time import localtime, strftime from collections import Counter import pandas as pd from pandas import DataFrame, Series from corpkit.interrogation import Interrogation, Interrodict from corpkit.corpus import Datalist, Corpora, Corpus, File, Subcorpus from corpkit.process import (tregex_engine, get_deps, unsplitter, sanitise_dict, animator, filtermaker, fix_search, pat_format, auto_usecols, format_tregex, make_conc_lines_from_whole_mid) from corpkit.other import as_regex from corpkit.dictionaries.process_types import Wordlist from corpkit.build import check_jdk from corpkit.conll import pipeline from corpkit.process import delete_files_and_subcorpora have_java = check_jdk() # remake corpus without bad files and folders corpus, skip_metadata, just_metadata = delete_files_and_subcorpora(corpus, skip_metadata, just_metadata) # so you can do corpus.interrogate('features/postags/wordclasses/lexicon') if search == 'features': search = 'v' query = 'any' if search in ['postags', 'wordclasses']: query = 'any' preserve_case = True show = 'p' if search == 'postags' else 'x' # use tregex if simple because it's faster # but use dependencies otherwise search = 't' if not subcorpora and not just_metadata and not skip_metadata and have_java else {'w': 'any'} if search == 'lexicon': search = 't' if not subcorpora and not just_metadata and not skip_metadata and have_java else {'w': 'any'} query = 'any' show = ['w'] if not kwargs.get('cql') and isinstance(search, STRINGTYPE) and len(search) > 3: raise ValueError('search argument not recognised.') import re if regex_nonword_filter: is_a_word = re.compile(regex_nonword_filter) else: is_a_word = re.compile(r'.*') from traitlets import TraitError # convert cql-style queries---pop for the sake of multiprocessing cql = kwargs.pop('cql', None) if cql: from corpkit.cql import to_corpkit search, exclude = to_corpkit(search) def signal_handler(signal, _): """ Allow pausing and restarting whn not in GUI """ if root: return import signal import sys from time import localtime, strftime signal.signal(signal.SIGINT, original_sigint) thetime = strftime("%H:%M:%S", localtime()) INPUTFUNC('\n\n%s: Paused. Press any key to resume, or ctrl+c to quit.\n' % thetime) time = strftime("%H:%M:%S", localtime()) print('%s: Interrogation resumed.\n' % time) signal.signal(signal.SIGINT, signal_handler) def add_adj_for_ngram(show, gramsize): """ If there's a gramsize of more than 1, remake show for ngramming """ if gramsize == 1: return show out = [] for i in show: out.append(i) for i in range(1, gramsize): for bit in show: out.append('+%d%s' % (i, bit)) return out def fix_show_bit(show_bit): """ Take a single search/show_bit type, return match """ ends = ['w', 'l', 'i', 'n', 'f', 'p', 'x', 's', 'a', 'e', 'c'] starts = ['d', 'g', 'm', 'b', 'h', '+', '-', 'r', 'c'] show_bit = show_bit.lstrip('n') show_bit = show_bit.lstrip('b') show_bit = list(show_bit) if show_bit[-1] not in ends: show_bit.append('w') if show_bit[0] not in starts: show_bit.insert(0, 'm') return ''.join(show_bit) def fix_show(show, gramsize): """ Lowercase anything in show and turn into list """ if isinstance(show, list): show = [i.lower() for i in show] elif isinstance(show, STRINGTYPE): show = show.lower() show = [show] show = [fix_show_bit(i) for i in show] return add_adj_for_ngram(show, gramsize) def is_multiquery(corpus, search, query, outname): """ Determine if multiprocessing is needed/possibe, and do some retyping if need be as well """ is_mul = False from collections import OrderedDict from corpkit.dictionaries.process_types import Wordlist if isinstance(query, Wordlist): query = list(query) if subcorpora and multiprocess: is_mul = 'subcorpora' if isinstance(subcorpora, (list, tuple)): is_mul = 'subcorpora' if isinstance(query, (dict, OrderedDict)): is_mul = 'namedqueriessingle' if isinstance(search, dict): if all(isinstance(i, dict) for i in list(search.values())): is_mul = 'namedqueriesmultiple' return is_mul, corpus, search, query def ispunct(s): import string return all(c in string.punctuation for c in s) def uniquify(conc_lines): """get unique concordance lines""" from collections import OrderedDict unique_lines = [] checking = [] for index, (_, speakr, start, middle, end) in enumerate(conc_lines): joined = ' '.join([speakr, start, 'MIDDLEHERE:', middle, ':MIDDLEHERE', end]) if joined not in checking: unique_lines.append(conc_lines[index]) checking.append(joined) return unique_lines def compiler(pattern): """ Compile regex or fail gracefully """ if hasattr(pattern, 'pattern'): return pattern import re try: if case_sensitive: comped = re.compile(pattern) else: comped = re.compile(pattern, re.IGNORECASE) return comped except: import traceback import sys from time import localtime, strftime exc_type, exc_value, exc_traceback = sys.exc_info() lst = traceback.format_exception(exc_type, exc_value, exc_traceback) error_message = lst[-1] thetime = strftime("%H:%M:%S", localtime()) print('%s: Query %s' % (thetime, error_message)) if root: return 'Bad query' else: raise ValueError('%s: Query %s' % (thetime, error_message)) def determine_search_func(show): """Figure out what search function we're using""" simple_tregex_mode = False statsmode = False tree_to_text = False search_trees = False simp_crit = all(not i for i in [kwargs.get('tgrep'), files_as_subcorpora, subcorpora, just_metadata, skip_metadata]) if search.get('t') and simp_crit: if have_java: simple_tregex_mode = True else: search_trees = 'tgrep' optiontext = 'Searching parse trees' elif datatype == 'conll': if any(i.endswith('t') for i in search.keys()): if have_java and not kwargs.get('tgrep'): search_trees = 'tregex' else: search_trees = 'tgrep' optiontext = 'Searching parse trees' elif any(i.endswith('v') for i in search.keys()): # either of these searchers now seems to work #seacher = get_stats_conll statsmode = True optiontext = 'General statistics' elif any(i.endswith('r') for i in search.keys()): optiontext = 'Distance from root' else: optiontext = 'Querying CONLL data' return optiontext, simple_tregex_mode, statsmode, tree_to_text, search_trees def get_tregex_values(show): """If using Tregex, set appropriate values - Check for valid query - Make 'any' query - Make list query """ translated_option = 't' if isinstance(search['t'], Wordlist): search['t'] = list(search['t']) q = tregex_engine(corpus=False, query=search.get('t'), options=['-t'], check_query=True, root=root, preserve_case=preserve_case ) # so many of these bad fixing loops! nshow = [] for i in show: if i == 'm': nshow.append('w') else: nshow.append(i.lstrip('m')) show = nshow if q is False: if root: return 'Bad query', None else: return 'Bad query', None if isinstance(search['t'], list): regex = as_regex(search['t'], boundaries='line', case_sensitive=case_sensitive) else: regex = '' # listquery, anyquery, translated_option treg_dict = {'p': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'], 'pl': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'], 'x': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'], 't': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'o'], 'w': [r'/%s/ !< __' % regex, r'/.?[A-Za-z0-9].?/ !< __', 't'], 'c': [r'/%s/ !< __' % regex, r'/.?[A-Za-z0-9].?/ !< __', 'C'], 'l': [r'/%s/ !< __' % regex, r'/.?[A-Za-z0-9].?/ !< __', 't'], 'u': [r'/%s/ !< __' % regex, r'/.?[A-Za-z0-9].?/ !< __', 'v'] } newshow = [] listq, anyq, translated_option = treg_dict.get(show[0][-1].lower()) newshow.append(translated_option) for item in show[1:]: _, _, noption = treg_dict.get(item.lower()) newshow.append(noption) if isinstance(search['t'], list): search['t'] = listq elif search['t'] == 'any': search['t'] = anyq return search['t'], newshow def correct_spelling(a_string): """correct spelling within a string""" if not spelling: return a_string from corpkit.dictionaries.word_transforms import usa_convert if spelling.lower() == 'uk': usa_convert = {v: k for k, v in list(usa_convert.items())} bits = a_string.split('/') for index, i in enumerate(bits): converted = usa_convert.get(i.lower(), i) if i.islower() or preserve_case is False: converted = converted.lower() elif i.isupper() and preserve_case: converted = converted.upper() elif i.istitle() and preserve_case: converted = converted.title() bits[index] = converted r = '/'.join(bits) return r def make_search_iterable(corpus): """determine how to structure the corpus for interrogation""" # skip file definitions if they are not needed if getattr(corpus, '_dlist', False): return {(i.name, i.path): [i] for i in list(corpus.files)} #return {('Sample', 'Sample'): list(corpus.files)} if simple_tregex_mode: if corpus.level in ['s', 'f', 'd']: return {(corpus.name, corpus.path): False} else: return {(os.path.basename(i), os.path.join(corpus.path, i)): False for i in os.listdir(corpus.path) if os.path.isdir(os.path.join(corpus.path, i))} if isinstance(corpus, Datalist): to_iterate_over = {} # it could be files or subcorpus objects if corpus[0].level in ['s', 'd']: if files_as_subcorpora: for subc in corpus: for f in subc.files: to_iterate_over[(f.name, f.path)] = [f] else: for subc in corpus: to_iterate_over[(subc.name, subc.path)] = subc.files elif corpus[0].level == 'f': for f in corpus: to_iterate_over[(f.name, f.path)] = [f] elif corpus.singlefile: to_iterate_over = {(corpus.name, corpus.path): [corpus]} elif not hasattr(corpus, 'subcorpora') or not corpus.subcorpora: # just files in a directory if files_as_subcorpora: to_iterate_over = {} for f in corpus.files: to_iterate_over[(f.name, f.path)] = [f] else: to_iterate_over = {(corpus.name, corpus.path): corpus.files} else: to_iterate_over = {} if files_as_subcorpora: # don't know if possible: has subcorpora but also .files if hasattr(corpus, 'files') and corpus.files is not None: for f in corpus.files: to_iterate_over[(f.name, f.path)] = [f] # has subcorpora with files in those elif hasattr(corpus, 'files') and corpus.files is None: for subc in corpus.subcorpora: for f in subc.files: to_iterate_over[(f.name, f.path)] = [f] else: if corpus[0].level == 's': for subcorpus in corpus: to_iterate_over[(subcorpus.name, subcorpus.path)] = subcorpus.files elif corpus[0].level == 'f': for f in corpus: to_iterate_over[(f.name, f.path)] = [f] else: for subcorpus in corpus.subcorpora: to_iterate_over[(subcorpus.name, subcorpus.path)] = subcorpus.files return to_iterate_over def welcome_printer(return_it=False): """Print welcome message""" if no_conc: message = 'Interrogating' else: message = 'Interrogating and concordancing' if only_conc: message = 'Concordancing' if kwargs.get('printstatus', True): thetime = strftime("%H:%M:%S", localtime()) from corpkit.process import dictformat sformat = dictformat(search) welcome = ('\n%s: %s %s ...\n %s\n ' \ 'Query: %s\n %s corpus ... \n' % \ (thetime, message, cname, optiontext, sformat, message)) if return_it: return welcome else: print(welcome) def goodbye_printer(return_it=False, only_conc=False): """Say goodbye before exiting""" if not kwargs.get('printstatus', True): return thetime = strftime("%H:%M:%S", localtime()) if only_conc: finalstring = '\n\n%s: Concordancing finished! %s results.' % (thetime, format(len(conc_df), ',')) else: finalstring = '\n\n%s: Interrogation finished!' % thetime if countmode: finalstring += ' %s matches.' % format(tot, ',') else: finalstring += ' %s unique results, %s total occurrences.' % (format(numentries, ','), format(total_total, ',')) if return_it: return finalstring else: print(finalstring) def get_conc_colnames(corpus, fsi_index=False, simple_tregex_mode=False): fields = [] base = 'c f s l m r' if simple_tregex_mode: base = base.replace('f ', '') if fsi_index and not simple_tregex_mode: base = 'i ' + base if PYTHON_VERSION == 2: base = base.encode('utf-8').split() else: base = base.split() if show_conc_metadata: from corpkit.build import get_all_metadata_fields meta = get_all_metadata_fields(corpus.path) if isinstance(show_conc_metadata, list): meta = [i for i in meta if i in show_conc_metadata] #elif show_conc_metadata is True: # pass for i in sorted(meta): if i in ['speaker', 'sent_id', 'parse']: continue if PYTHON_VERSION == 2: base.append(i.encode('utf-8')) else: base.append(i) return base def make_conc_obj_from_conclines(conc_results, fsi_index=False): """ Turn conclines into DataFrame """ from corpkit.interrogation import Concordance #fsi_place = 2 if fsi_index else 0 all_conc_lines = [] for sc_name, resu in sorted(conc_results.items()): if only_unique: unique_results = uniquify(resu) else: unique_results = resu #make into series for lin in unique_results: #spkr = str(spkr, errors = 'ignore') #if not subcorpora: # lin[fsi_place] = lin[fsi_place] #lin.insert(fsi_place, sc_name) if len(lin) < len(conc_col_names): diff = len(conc_col_names) - len(lin) lin.extend(['none'] * diff) all_conc_lines.append(Series(lin, index=conc_col_names)) try: conc_df = pd.concat(all_conc_lines, axis=1).T except ValueError: return if all(x == '' for x in list(conc_df['s'].values)) or \ all(x == 'none' for x in list(conc_df['s'].values)): conc_df.drop('s', axis=1, inplace=True) locs['corpus'] = corpus.name if maxconc: conc_df = Concordance(conc_df[:maxconc]) else: conc_df = Concordance(conc_df) try: conc_df.query = locs except AttributeError: pass return conc_df def lowercase_result(res): """ Take any result and do spelling/lowercasing if need be todo: remove lowercase and change name """ if not res or statsmode: return res # this is likely broken, but spelling in interrogate is deprecated anyway if spelling: res = [correct_spelling(r) for r in res] return res def postprocess_concline(line, fsi_index=False, conc=False): # todo: are these right? if not conc: return line subc, star, en = 0, 2, 5 if fsi_index: subc, star, en = 2, 4, 7 if not preserve_case: line[star:en] = [str(x).lower() for x in line[star:en]] if spelling: line[star:en] = [correct_spelling(str(b)) for b in line[star:en]] return line def make_progress_bar(): """generate a progress bar""" if simple_tregex_mode: total_files = len(list(to_iterate_over.keys())) else: total_files = sum(len(x) for x in list(to_iterate_over.values())) par_args = {'printstatus': kwargs.get('printstatus', True), 'root': root, 'note': note, 'quiet': quiet, 'length': total_files, 'startnum': kwargs.get('startnum'), 'denom': kwargs.get('denominator', 1)} term = None if kwargs.get('paralleling', None) is not None: from blessings import Terminal term = Terminal() par_args['terminal'] = term par_args['linenum'] = kwargs.get('paralleling') if in_notebook: par_args['welcome_message'] = welcome_message outn = kwargs.get('outname', '') if outn: outn = getattr(outn, 'name', outn) outn = outn + ': ' tstr = '%s%d/%d' % (outn, current_iter, total_files) p = animator(None, None, init=True, tot_string=tstr, **par_args) tstr = '%s%d/%d' % (outn, current_iter + 1, total_files) animator(p, current_iter, tstr, **par_args) return p, outn, total_files, par_args # find out if using gui root = kwargs.get('root') note = kwargs.get('note') language_model = kwargs.get('language_model') # set up pause method original_sigint = signal.getsignal(signal.SIGINT) if kwargs.get('paralleling', None) is None: if not root: original_sigint = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, signal_handler) # find out about concordancing only_conc = False no_conc = False if conc is False: no_conc = True if isinstance(conc, str) and conc.lower() == 'only': only_conc = True no_conc = False numconc = 0 # wipe non essential class attributes to not bloat query attrib if isinstance(corpus, Corpus): import copy corpus = copy.copy(corpus) for k, v in corpus.__dict__.items(): if isinstance(v, (Interrogation, Interrodict)): corpus.__dict__.pop(k, None) # convert path to corpus object if not isinstance(corpus, (Corpus, Corpora, Subcorpus, File, Datalist)): if not multiprocess and not kwargs.get('outname'): corpus = Corpus(corpus, print_info=False) # figure out how the user has entered the query and show, and normalise from corpkit.process import searchfixer search = searchfixer(search, query) show = fix_show(show, gramsize) locs['show'] = show # instantiate lemmatiser if need be lem_instance = False if any(i.endswith('l') for i in show) and isinstance(search, dict) and search.get('t'): from nltk.stem.wordnet import WordNetLemmatizer lem_instance = WordNetLemmatizer() # do multiprocessing if need be im, corpus, search, query, = is_multiquery(corpus, search, query, kwargs.get('outname', False)) # figure out if we can multiprocess the corpus if hasattr(corpus, '__iter__') and im: corpus = Corpus(corpus, print_info=False) if hasattr(corpus, '__iter__') and not im: im = 'datalist' if isinstance(corpus, Corpora): im = 'multiplecorpora' # split corpus if the user wants multiprocessing but no other iterable if not im and multiprocess: im = 'datalist' if getattr(corpus, 'subcorpora', False): corpus = corpus[:] else: corpus = corpus.files search = fix_search(search, case_sensitive=case_sensitive, root=root) exclude = fix_search(exclude, case_sensitive=case_sensitive, root=root) # if it's already been through pmultiquery, don't do it again locs['search'] = search locs['exclude'] = exclude locs['query'] = query locs['corpus'] = corpus locs['multiprocess'] = multiprocess locs['print_info'] = kwargs.get('printstatus', True) locs['multiple'] = im locs['subcorpora'] = subcorpora locs['nosubmode'] = nosubmode # send to multiprocess function if im: signal.signal(signal.SIGINT, original_sigint) from corpkit.multiprocess import pmultiquery return pmultiquery(**locs) # get corpus metadata cname = corpus.name if isinstance(save, STRINGTYPE): savename = corpus.name + '-' + save if save is True: raise ValueError('save must be str, not bool.') datatype = getattr(corpus, 'datatype', 'conll') singlefile = getattr(corpus, 'singlefile', False) level = getattr(corpus, 'level', 'c') # store all results in here from collections import defaultdict results = defaultdict(Counter) count_results = defaultdict(list) conc_results = defaultdict(list) # check if just counting, turn off conc if so countmode = 'c' in show or 'mc' in show if countmode: no_conc = True only_conc = False # where we are at in interrogation current_iter = 0 # multiprocessing progress bar denom = kwargs.get('denominator', 1) startnum = kwargs.get('startnum', 0) # Determine the search function to be used # optiontext, simple_tregex_mode, statsmode, tree_to_text, search_trees = determine_search_func(show) # no conc for statsmode if statsmode: no_conc = True only_conc = False conc = False # Set some Tregex-related values translated_option = False if search.get('t'): query, translated_option = get_tregex_values(show) if query == 'Bad query' and translated_option is None: if root: return 'Bad query' else: return # more tregex options if tree_to_text: treg_q = r'ROOT << __' op = ['-o', '-t', '-w', '-f'] elif simple_tregex_mode: treg_q = search['t'] op = ['-%s' % i for i in translated_option] + ['-o', '-f'] # make iterable object for corpus interrogation to_iterate_over = make_search_iterable(corpus) try: from ipywidgets import IntProgress _ = IntProgress(min=0, max=10, value=1) in_notebook = True except TraitError: in_notebook = False except ImportError: in_notebook = False # caused in newest ipython except AttributeError: in_notebook = False lemtag = False if search.get('t'): from corpkit.process import gettag lemtag = gettag(search.get('t'), lemmatag) usecols = auto_usecols(search, exclude, show, kwargs.pop('usecols', None), coref=coref) # print welcome message welcome_message = welcome_printer(return_it=in_notebook) # create a progress bar p, outn, total_files, par_args = make_progress_bar() if conc: conc_col_names = get_conc_colnames(corpus, fsi_index=fsi_index, simple_tregex_mode=False) # Iterate over data, doing interrogations for (subcorpus_name, subcorpus_path), files in sorted(to_iterate_over.items()): if nosubmode: subcorpus_name = 'Total' # results for subcorpus go here #conc_results[subcorpus_name] = [] #count_results[subcorpus_name] = [] #results[subcorpus_name] = Counter() # get either everything (tree_to_text) or the search['t'] query if tree_to_text or simple_tregex_mode: result = tregex_engine(query=treg_q, options=op, corpus=subcorpus_path, root=root, preserve_case=preserve_case) # format search results with slashes etc if not countmode and not tree_to_text: result = format_tregex(result, show, translated_option=translated_option, exclude=exclude, excludemode=excludemode, lemtag=lemtag, lem_instance=lem_instance, countmode=countmode, speaker_data=False) # if concordancing, do the query again with 'whole' sent and fname if not no_conc: ops = ['-w'] + op #ops = [i for i in ops if i != '-n'] whole_result = tregex_engine(query=search['t'], options=ops, corpus=subcorpus_path, root=root, preserve_case=preserve_case ) # format match too depending on option if not only_format_match: wholeresult = format_tregex(whole_result, show, translated_option=translated_option, exclude=exclude, excludemode=excludemode, lemtag=lemtag, lem_instance=lem_instance, countmode=countmode, speaker_data=False, whole=True) # make conc lines from conc results conc_result = make_conc_lines_from_whole_mid(whole_result, result, show=show) for lin in conc_result: if maxconc is False or numconc < maxconc: conc_results[subcorpus_name].append(lin) numconc += 1 # add matches to ongoing counts if countmode: count_results[subcorpus_name] += [result] else: if result: results[subcorpus_name] += Counter([i[-1] for i in result]) else: results[subcorpus_name] += Counter() # update progress bar current_iter += 1 tstr = '%s%d/%d' % (outn, current_iter + 1, total_files) animator(p, current_iter, tstr, **par_args) continue # todo: move this kwargs.pop('by_metadata', None) # conll querying goes by file, not subcorpus for f in files: slow_treg_speaker_guess = kwargs.get('outname', '') if kwargs.get('multispeaker') else '' filepath, corefs = f.path, coref res, conc_res = pipeline(filepath, search=search, show=show, dep_type=dep_type, exclude=exclude, excludemode=excludemode, searchmode=searchmode, case_sensitive=case_sensitive, conc=conc, only_format_match=only_format_match, speaker=slow_treg_speaker_guess, gramsize=gramsize, no_punct=no_punct, no_closed=no_closed, window=window, filename=f.path, coref=corefs, countmode=countmode, maxconc=(maxconc, numconc), is_a_word=is_a_word, by_metadata=subcorpora, show_conc_metadata=show_conc_metadata, just_metadata=just_metadata, skip_metadata=skip_metadata, fsi_index=fsi_index, category=subcorpus_name, translated_option=translated_option, statsmode=statsmode, preserve_case=preserve_case, usecols=usecols, search_trees=search_trees, lem_instance=lem_instance, lemtag=lemtag, **kwargs) if res is None and conc_res is None: current_iter += 1 tstr = '%s%d/%d' % (outn, current_iter + 1, total_files) animator(p, current_iter, tstr, **par_args) continue # deal with symbolic structures---that is, rather than adding # results by subcorpora, add them by metadata value # todo: sorting? if subcorpora: for (k, v), concl in zip(res.items(), conc_res.values()): v = lowercase_result(v) results[k] += Counter(v) for line in concl: if maxconc is False or numconc < maxconc: line = postprocess_concline(line, fsi_index=fsi_index, conc=conc) conc_results[k].append(line) numconc += 1 current_iter += 1 tstr = '%s%d/%d' % (outn, current_iter + 1, total_files) animator(p, current_iter, tstr, **par_args) continue # garbage collection needed? sents = None corefs = None if res == 'Bad query': return 'Bad query' if countmode: count_results[subcorpus_name] += [res] else: # add filename and do lowercasing for conc if not no_conc: for line in conc_res: line = postprocess_concline(line, fsi_index=fsi_index, conc=conc) if maxconc is False or numconc < maxconc: conc_results[subcorpus_name].append(line) numconc += 1 # do lowercasing and spelling if not only_conc: res = lowercase_result(res) # discard removes low results, helping with # curse of dimensionality countres = Counter(res) if isinstance(discard, float): countres.most_common() nkeep = len(counter) - len(counter) * discard countres = Counter({k: v for i, (k, v) in enumerate(countres.most_common()) if i <= nkeep}) elif isinstance(discard, int): countres = Counter({k: v for k, v in countres.most_common() if v >= discard}) results[subcorpus_name] += countres #else: #results[subcorpus_name] += res # update progress bar current_iter += 1 tstr = '%s%d/%d' % (outn, current_iter + 1, total_files) animator(p, current_iter, tstr, **par_args) # Get concordances into DataFrame, return if just conc if not no_conc: # fail on this line with typeerror if no results? conc_df = make_conc_obj_from_conclines(conc_results, fsi_index=fsi_index) if only_conc and conc_df is None: return elif only_conc: locs = sanitise_dict(locs) try: conc_df.query = locs except AttributeError: return conc_df if save and not kwargs.get('outname'): if conc_df is not None: conc_df.save(savename) goodbye_printer(only_conc=True) if not root: signal.signal(signal.SIGINT, original_sigint) return conc_df else: conc_df = None # Get interrogation into DataFrame if countmode: df = Series({k: sum(v) for k, v in sorted(count_results.items())}) tot = df.sum() else: the_big_dict = {} unique_results = set(item for sublist in list(results.values()) for item in sublist) sortres = sorted(results.items(), key=lambda x: x[0]) for word in unique_results: the_big_dict[word] = [subcorp_result[word] for _, subcorp_result in sortres] # turn master dict into dataframe, sorted df = DataFrame(the_big_dict, index=sorted(results.keys())) # for ngrams, remove hapaxes #if show_ngram or show_collocates: # if not language_model: # df = df[[i for i in list(df.columns) if df[i].sum() > 1]] numentries = len(df.columns) tot = df.sum(axis=1) total_total = df.sum().sum() # turn df into series if all conditions met conds = [countmode, files_as_subcorpora, subcorpora, kwargs.get('df1_always_df', False)] anyxs = [level == 's', singlefile, nosubmode] if all(not x for x in conds) and any(x for x in anyxs): df = Series(df.ix[0]) df.sort_values(ascending=False, inplace=True) tot = df.sum() numentries = len(df.index) total_total = tot # turn data into DF for GUI if need be if isinstance(df, Series) and kwargs.get('df1_always_df', False): total_total = df.sum() df = DataFrame(df) tot = Series(total_total, index=['Total']) # if we're doing files as subcorpora, we can remove the extension etc if isinstance(df, DataFrame) and files_as_subcorpora: cname = corpus.name.replace('-stripped', '').replace('-parsed', '') edits = [(r'(-[0-9][0-9][0-9])?\.txt\.conllu?', ''), (r'-%s(-stripped)?(-parsed)?' % cname, '')] from corpkit.editor import editor df = editor(df, replace_subcorpus_names=edits).results tot = df.sum(axis=1) total_total = df.sum().sum() if conc_df is not None and conc_df is not False: # removed 'f' from here for now for col in ['c']: for pat in ['.txt', '.conll', '.conllu']: conc_df[col] = conc_df[col].str.replace(pat, '') conc_df[col] = conc_df[col].str.replace(r'-[0-9][0-9][0-9]$', '') #df.index = df.index.str.replace('w', 'this') # make interrogation object locs['corpus'] = corpus.path locs = sanitise_dict(locs) if nosubmode and isinstance(df, pd.DataFrame): df = df.sum() interro = Interrogation(results=df, totals=tot, query=locs, concordance=conc_df) # save it if save and not kwargs.get('outname'): print('\n') interro.save(savename) goodbye = goodbye_printer(return_it=in_notebook) if in_notebook: try: p.children[2].value = goodbye.replace('\n', '') except AttributeError: pass if not root: signal.signal(signal.SIGINT, original_sigint) return interro
def edit(self, *args, **kwargs): """ Manipulate results of interrogations. There are a few overall kinds of edit, most of which can be combined into a single function call. It's useful to keep in mind that many are basic wrappers around `pandas` operations---if you're comfortable with `pandas` syntax, it may be faster at times to use its syntax instead. :Basic mathematical operations: First, you can do basic maths on results, optionally passing in some data to serve as the denominator. Very commonly, you'll want to get relative frequencies: :Example: >>> data = corpus.interrogate({W: r'^t'}) >>> rel = data.edit('%', SELF) >>> rel.results .. to that the then ... toilet tolerant tolerate ton 01 18.50 14.65 14.44 6.20 ... 0.00 0.00 0.11 0.00 02 24.10 14.34 13.73 8.80 ... 0.00 0.00 0.00 0.00 03 17.31 18.01 9.97 7.62 ... 0.00 0.00 0.00 0.00 For the operation, there are a number of possible values, each of which is to be passed in as a `str`: `+`, `-`, `/`, `*`, `%`: self explanatory `k`: calculate keywords `a`: get distance metric `SELF` is a very useful shorthand denominator. When used, all editing is performed on the data. The totals are then extracted from the edited data, and used as denominator. If this is not the desired behaviour, however, a more specific `interrogation.results` or `interrogation.totals` attribute can be used. In the example above, `SELF` (or `'self'`) is equivalent to: :Example: >>> rel = data.edit('%', data.totals) :Keeping and skipping data: There are four keyword arguments that can be used to keep or skip rows or columns in the data: * `just_entries` * `just_subcorpora` * `skip_entries` * `skip_subcorpora` Each can accept different input types: * `str`: treated as regular expression to match * `list`: * of integers: indices to match * of strings: entries/subcorpora to match :Example: >>> data.edit(just_entries=r'^fr', ... skip_entries=['free','freedom'], ... skip_subcorpora=r'[0-9]') :Merging data: There are also keyword arguments for merging entries and subcorpora: * `merge_entries` * `merge_subcorpora` These take a `dict`, with the new name as key and the criteria as value. The criteria can be a str (regex) or wordlist. :Example: >>> from dictionaries.wordlists import wordlists >>> mer = {'Articles': ['the', 'an', 'a'], 'Modals': wordlists.modals} >>> data.edit(merge_entries=mer) :Sorting: The `sort_by` keyword argument takes a `str`, which represents the way the result columns should be ordered. * `increase`: highest to lowest slope value * `decrease`: lowest to highest slope value * `turbulent`: most change in y axis values * `static`: least change in y axis values * `total/most`: largest number first * `infreq/least`: smallest number first * `name`: alphabetically :Example: >>> data.edit(sort_by='increase') :Editing text: Column labels, corresponding to individual interrogation results, can also be edited with `replace_names`. :param replace_names: Edit result names, then merge duplicate entries :type replace_names: `str`/`list of tuples`/`dict` If `replace_names` is a string, it is treated as a regex to delete from each name. If `replace_names` is a dict, the value is the regex, and the key is the replacement text. Using a list of tuples in the form `(find, replacement)` allows duplicate substitution values. :Example: >>> data.edit(replace_names={r'object': r'[di]obj'}) :param replace_subcorpus_names: Edit subcorpus names, then merge duplicates. The same as `replace_names`, but on the other axis. :type replace_subcorpus_names: `str`/`list of tuples`/`dict` :Other options: There are many other miscellaneous options. :param keep_stats: Keep/drop stats values from dataframe after sorting :type keep_stats: `bool` :param keep_top: After sorting, remove all but the top *keep_top* results :type keep_top: `int` :param just_totals: Sum each column and work with sums :type just_totals: `bool` :param threshold: When using results list as dataframe 2, drop values occurring fewer than n times. If not keywording, you can use: `'high'`: `denominator total / 2500` `'medium'`: `denominator total / 5000` `'low'`: `denominator total / 10000` If keywording, there are smaller default thresholds :type threshold: `int`/`bool` :param span_subcorpora: If subcorpora are numerically named, span all from *int* to *int2*, inclusive :type span_subcorpora: `tuple` -- `(int, int2)` :param projection: multiply results in subcorpus by n :type projection: tuple -- `(subcorpus_name, n)` :param remove_above_p: Delete any result over `p` :type remove_above_p: `bool` :param p: set the p value :type p: `float` :param revert_year: When doing linear regression on years, turn annual subcorpora into 1, 2 ... :type revert_year: `bool` :param print_info: Print stuff to console showing what's being edited :type print_info: `bool` :param spelling: Convert/normalise spelling: :type spelling: `str` -- `'US'`/`'UK'` :Keywording options: If the operation is `k`, you're calculating keywords. In this case, some other keyword arguments have an effect: :param keyword_measure: what measure to use to calculate keywords: `ll`: log-likelihood `pd': percentage difference type keyword_measure: `str` :param selfdrop: When keywording, try to remove target corpus from reference corpus :type selfdrop: `bool` :param calc_all: When keywording, calculate words that appear in either corpus :type calc_all: `bool` :returns: :class:`corpkit.interrogation.Interrogation` """ from corpkit.editor import editor return editor(self, *args, **kwargs)
def sort(self, way, **kwargs): from corpkit.editor import editor return editor(self, sort_by=way, **kwargs)
def editor(dataframe1, operation = None, dataframe2 = False, sort_by = False, keep_stats = False, keep_top = False, just_totals = False, threshold = 'medium', just_entries = False, skip_entries = False, merge_entries = False, newname = 'combine', multiple_merge = False, just_subcorpora = False, skip_subcorpora = False, span_subcorpora = False, merge_subcorpora = False, new_subcorpus_name = False, replace_names = False, projection = False, remove_above_p = False, p = 0.05, revert_year = True, print_info = True, spelling = False, selfdrop = True, calc_all = True, **kwargs ): """Edit results of interrogations, do keywording, sort, etc. ``just/skip_entries`` and ``just/skip_subcorpora`` can take a few different kinds of input: * str: treated as regular expression to match * list: * of integers: indices to match * of strings: entries/subcorpora to match ``merge_entries`` and ``merge_subcorpora``, however, are best entered as dicts: ``{newname: criteria, newname2: criteria2}``` where criteria is a string, list, etc. :param dataframe1: Results to edit :type dataframe1: pandas.core.frame.DataFrame :param operation: Kind of maths to do on inputted lists: '+', '-', '/', '*', '%': self explanatory 'k': log likelihood (keywords) 'a': get distance metric (for use with interrogator 'a' option) 'd': get percent difference (alternative approach to keywording) :type operation: str :param dataframe2: List of results or totals. If list of results, for each entry in dataframe 1, locate entry with same name in dataframe 2, and do maths there if 'self', do all merging/keeping operations, then use edited dataframe1 as dataframe2 :type dataframe2: pandas.core.series.Series/pandas.core.frame.DataFrame/dict/'self' :param sort_by: Calculate slope, stderr, r, p values, then sort by: increase: highest to lowest slope value decrease: lowest to highest slope value turbulent: most change in y axis values static: least change in y axis values total/most: largest number first infreq/least: smallest number first name: alphabetically :type sort_by: str :param keep_stats: Keep/drop stats values from dataframe after sorting :type keep_stats: bool :param keep_top: After sorting, remove all but the top *keep_top* results :type keep_top: int :param just_totals: Sum each column and work with sums :type just_totals: bool :param threshold: When using results list as dataframe 2, drop values occurring fewer than n times. If not keywording, you can use: ``'high'``: dataframe2 total / 2500 ``'medium'``: dataframe2 total / 5000 ``'low'``: dataframe2 total / 10000 Note: if keywording, there are smaller default thresholds :type threshold: int/bool :param just_entries: Keep matching entries :type just_entries: see above :param skip_entries: Skip matching entries :type skip_entries: see above :param merge_entries: Merge matching entries :type merge_entries: see above :param newname: New name for merged entries :type newname: str/'combine' :param just_subcorpora: Keep matching subcorpora :type just_subcorpora: see above :param skip_subcorpora: Skip matching subcorpora :type skip_subcorpora: see above :param span_subcorpora: If subcorpora are numerically named, span all from *int* to *int2*, inclusive :type span_subcorpora: tuple -- ``(int, int2)`` :param merge_subcorpora: Merge matching subcorpora :type merge_subcorpora: see above :param new_subcorpus_name: Name for merged subcorpora :type new_subcorpus_name: str/``'combine'`` :param replace_names: Edit result names and then merge duplicate names. :type replace_names: dict -- ``{criteria: replacement_text}``; str -- a regex to delete from names :param projection: a to multiply results in subcorpus by n :type projection: tuple -- ``(subcorpus_name, n)`` :param remove_above_p: Delete any result over p :type remove_above_p: bool :param p: set the p value :type p: float :param revert_year: when doing linear regression on years, turn annual subcorpora into 1, 2 ... :type revert_year: bool :param print_info: Print stuff to console showing what's being edited :type print_info: bool :param spelling: Convert/normalise spelling: :type spelling: str -- ``'US'``/``'UK'`` :param selfdrop: When keywording, try to remove target corpus from reference corpus :type selfdrop: bool :param calc_all: When keywording, calculate words that appear in either corpus :type calc_all: bool :returns: Edited interrogation """ # grab arguments, in case we get dict input and have to iterate saved_args = locals() import corpkit import pandas import signal import re import collections import pandas as pd import numpy as np from pandas import DataFrame, Series from time import localtime, strftime try: get_ipython().getoutput() except TypeError: have_ipython = True except NameError: have_ipython = False try: from IPython.display import display, clear_output except ImportError: pass # if passing a multiquery, do each result separately and return if type(dataframe1) == dict: outdict = {} from corpkit.editor import editor del saved_args['dataframe1'] for i, (k, v) in enumerate(dataframe1.items()): # only print the first time around if i == 0: pass #saved_args['print_info'] = True else: saved_args['print_info'] = False # if df2 is also a dict, get the relevant entry if type(dataframe2) == dict: if sorted(set([i.lower() for i in dataframe1.keys()])) == \ sorted(set([i.lower() for i in dataframe2.keys()])): saved_args['dataframe2'] = dataframe2[k] if 'use_df2_totals' in kwargs.keys(): if kwargs['use_df2_totals'] is True: saved_args['dataframe2'] = dataframe2[k].totals outdict[k] = editor(v.results, **saved_args) if print_info: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print "\n%s: Finished! Output is a dictionary with keys:\n\n '%s'\n" % (thetime, "'\n '".join(sorted(outdict.keys()))) return outdict the_time_started = strftime("%Y-%m-%d %H:%M:%S") pd.options.mode.chained_assignment = None pd.set_option('display.float_format', lambda x: '%.2f' % x) from corpkit.tests import check_pytex if check_pytex(): print_info = False def combiney(df, df2, operation = '%', threshold = 'medium', prinf = True): """mash df and df2 together in appropriate way""" totals = False # delete under threshold if just_totals: if using_totals: if not single_totals: to_drop = list(df2[df2['Combined total'] < threshold].index) df = df.drop([e for e in to_drop if e in list(df.index)]) if prinf: to_show = [] [to_show.append(w) for w in to_drop[:5]] if len(to_drop) > 10: to_show.append('...') [to_show.append(w) for w in to_drop[-5:]] if len(to_drop) > 0: print 'Removing %d entries below threshold:\n %s' % (len(to_drop), '\n '.join(to_show)) if len(to_drop) > 10: print '... and %d more ... \n' % (len(to_drop) - len(to_show) + 1) else: print '' else: denom = df2 else: denom = list(df2) if single_totals: if operation == '%': totals = df.sum() * 100.0 / float(df.sum().sum()) df = df * 100.0 try: df = df.div(denom, axis = 0) except ValueError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: cannot combine DataFrame 1 and 2: different shapes' % thetime elif operation == '+': try: df = df.add(denom, axis = 0) except ValueError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: cannot combine DataFrame 1 and 2: different shapes' % thetime elif operation == '-': try: df = df.sub(denom, axis = 0) except ValueError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: cannot combine DataFrame 1 and 2: different shapes' % thetime elif operation == '*': totals = df.sum() * float(df.sum().sum()) try: df = df.mul(denom, axis = 0) except ValueError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: cannot combine DataFrame 1 and 2: different shapes' % thetime elif operation == '/': try: totals = df.sum() / float(df.sum().sum()) df = df.div(denom, axis = 0) except ValueError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: cannot combine DataFrame 1 and 2: different shapes' % thetime elif operation == 'd': #df.ix['Combined total'] = df.sum() #to_drop = to_drop = list(df.T[df.T['Combined total'] < threshold].index) to_drop = [n for n in list(df.columns) if df[n].sum() < threshold] df = df.drop([e for e in to_drop if e in list(df.columns)], axis = 1) #df.drop('Combined total') if prinf: to_show = [] [to_show.append(w) for w in to_drop[:5]] if len(to_drop) > 10: to_show.append('...') [to_show.append(w) for w in to_drop[-5:]] if len(to_drop) > 0: print 'Removing %d entries below threshold:\n %s' % (len(to_drop), '\n '.join(to_show)) if len(to_drop) > 10: print '... and %d more ... \n' % (len(to_drop) - len(to_show) + 1) else: print '' # get normalised num in target corpus norm_in_target = df.div(denom, axis = 0) # get normalised num in reference corpus, with or without selfdrop tot_in_ref = df.copy() for c in list(tot_in_ref.index): if selfdrop: tot_in_ref.ix[c] = df.sum() - tot_in_ref.ix[c] else: tot_in_ref.ix[c] = df.sum() norm_in_ref = tot_in_ref.div(df.sum().sum()) df = (norm_in_target - norm_in_ref) / norm_in_ref * 100.0 df = df.replace(float(-100.00), np.nan) elif operation == 'a': for c in [c for c in list(df.columns) if int(c) > 1]: df[c] = df[c] * (1.0 / int(c)) df = df.sum(axis = 1) / df2 elif operation.startswith('c'): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") df = pandas.concat([df, df2], axis = 1) return df, totals elif not single_totals: if not operation.startswith('a'): # generate totals if operation == '%': totals = df.sum() * 100.0 / float(df2.sum().sum()) if operation == '*': totals = df.sum() * float(df2.sum().sum()) if operation == '/': totals = df.sum() / float(df2.sum().sum()) if operation.startswith('c'): # add here the info that merging will not work # with identical colnames import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") d = pd.concat([df.T, df2.T]).sort() # make index nums d = d.reset_index() # sum and remove duplicates d = d.groupby('index').sum() dx = d.reset_index('index') dx.index = list(dx['index']) df = dx.drop('index', axis = 1).T for index, entry in enumerate(list(df.columns)): #p.animate(index) if operation == '%': try: df[entry] = df[entry] * 100.0 / df2[entry] except: continue #df.drop(entry, axis = 1, inplace = True) #df[entry] = maths_done elif operation == '+': try: df[entry] = df[entry] + df2[entry] except: continue elif operation == '-': try: df[entry] = df[entry] - df2[entry] except: continue elif operation == '*': try: df[entry] = df[entry] * df2[entry] except: continue elif operation == '/': try: df[entry] = df[entry] / df2[entry] except: continue else: for c in [c for c in list(df.columns) if int(c) > 1]: df[c] = df[c] * (1.0 / int(c)) df = df.sum(axis = 1) / df2.T.sum() return df, totals def parse_input(df, the_input): """turn whatever has been passed in into list of words that can be used as pandas indices---maybe a bad way to go about it""" # FIX MERGE ERROR HERE parsed_input = False import re if the_input == 'all': the_input = r'.*' if type(the_input) == int: try: the_input = str(the_input) except: pass the_input = [the_input] elif type(the_input) == str or type(the_input) == unicode: try: regex = re.compile(the_input) parsed_input = [w for w in list(df) if re.search(regex, w)] return parsed_input except: the_input = [the_input] if type(the_input) == list: if type(the_input[0]) == int: parsed_input = [word for index, word in enumerate(list(df)) if index in the_input] elif type(the_input[0]) == str or type(the_input[0]) == unicode: try: parsed_input = [word for word in the_input if word in df.columns] except AttributeError: # if series parsed_input = [word for word in the_input if word in df.index] return parsed_input def synonymise(df, pos = 'n'): """pass a df and a pos and convert df columns to most common synonyms""" from nltk.corpus import wordnet as wn #from dictionaries.taxonomies import taxonomies from collections import Counter fixed = [] for w in list(df.columns): try: syns = [] for syns in wn.synsets(w, pos = pos): for w in syns: synonyms.append(w) top_syn = Counter(syns).most_common(1)[0][0] fixed.append(top_syn) except: fixed.append(w) df.columns = fixed return df def convert_spell(df, convert_to = 'US', print_info = print_info): """turn dataframes into us/uk spelling""" from dictionaries.word_transforms import usa_convert if print_info: print 'Converting spelling ... \n' if convert_to == 'UK': usa_convert = {v: k for k, v in usa_convert.items()} fixed = [] for val in list(df.columns): try: fixed.append(usa_convert[val]) except: fixed.append(val) df.columns = fixed return df def merge_duplicates(df, print_info = print_info): if print_info: print 'Merging duplicate entries ... \n' # now we have to merge all duplicates for dup in df.columns.get_duplicates(): #num_dupes = len(list(df[dup].columns)) temp = df[dup].sum(axis = 1) #df = df.drop([dup for d in range(num_dupes)], axis = 1) df = df.drop(dup, axis = 1) df[dup] = temp return df def name_replacer(df, replace_names, print_info = print_info): """replace entry names and merge""" import re # double or single nest if need be if type(replace_names) == str: replace_names = [(replace_names, '')] if type(replace_names) != dict: if type(replace_names[0]) == str: replace_names = [replace_names] if type(replace_names) == dict: replace_names = [(v, k) for k, v in replace_names.items()] for to_find, replacement in replace_names: if print_info: try: print 'Replacing "%s" with "%s" ...\n' % (to_find, replacement) except: print 'Deleting "%s" from entry names ...\n' % (to_find) to_find = re.compile(to_find) try: replacement = replacement except: replacement = '' df.columns = [re.sub(to_find, replacement, l) for l in list(df.columns)] df = merge_duplicates(df, print_info = False) return df def just_these_entries(df, parsed_input, prinf = True): entries = [word for word in list(df) if word not in parsed_input] if prinf: print 'Keeping %d entries:\n %s' % (len(parsed_input), '\n '.join(parsed_input[:10])) if len(parsed_input) > 10: print '... and %d more ... \n' % (len(parsed_input) - 10) else: print '' df = df.drop(entries, axis = 1) return df def skip_these_entries(df, parsed_input, prinf = True): if prinf: print 'Skipping %d entries:\n %s' % (len(parsed_input), '\n '.join(parsed_input[:10])) if len(parsed_input) > 10: print '... and %d more ... \n' % (len(parsed_input) - 10) else: print '' df = df.drop(parsed_input, axis = 1) return df def newname_getter(df, parsed_input, newname = 'combine', prinf = True, merging_subcorpora = False): """makes appropriate name for merged entries""" if merging_subcorpora: if newname is False: newname = 'combine' if type(newname) == int: the_newname = list(df.columns)[newname] elif type(newname) == str: if newname == 'combine': if len(parsed_input) <= 3: the_newname = '/'.join(parsed_input) elif len(parsed_input) > 3: the_newname = '/'.join(parsed_input[:3]) + '...' else: the_newname = newname if newname is False: # revise this code import operator sumdict = {} for item in parsed_input: summed = sum(list(df[item])) sumdict[item] = summed the_newname = max(sumdict.iteritems(), key=operator.itemgetter(1))[0] if type(the_newname) != unicode: the_newname = unicode(the_newname, errors = 'ignore') return the_newname def merge_these_entries(df, parsed_input, the_newname, prinf = True, merging = 'entries'): # make new entry with sum of parsed input if len(parsed_input) == 0: import warnings warnings.warn('No %s could be automatically merged.\n' % merging) else: if prinf: print 'Merging %d %s as "%s":\n %s' % (len(parsed_input), merging, the_newname, '\n '.join(parsed_input[:10])) if len(parsed_input) > 10: print '... and %d more ... \n' % (len(parsed_input) - 10) else: print '' # remove old entries temp = sum([df[i] for i in parsed_input]) if not multiple_merge: if type(df) == pandas.core.series.Series: df = df.drop(parsed_input) else: df = df.drop(parsed_input, axis = 1) df[the_newname] = temp return df def just_these_subcorpora(df, lst_of_subcorpora, prinf = True): if type(lst_of_subcorpora[0]) == int: lst_of_subcorpora = [str(l) for l in lst_of_subcorpora] good_years = [subcorpus for subcorpus in list(df.index) if subcorpus in lst_of_subcorpora] if prinf: print 'Keeping %d subcorpora:\n %s' % (len(good_years), '\n '.join(good_years[:10])) if len(good_years) > 10: print '... and %d more ... \n' % (len(good_years) - 10) else: print '' df = df.drop([subcorpus for subcorpus in list(df.index) if subcorpus not in good_years], axis = 0) return df def skip_these_subcorpora(df, lst_of_subcorpora, prinf = True): if type(lst_of_subcorpora) == int: lst_of_subcorpora = [lst_of_subcorpora] if type(lst_of_subcorpora[0]) == int: lst_of_subcorpora = [str(l) for l in lst_of_subcorpora] bad_years = [subcorpus for subcorpus in list(df.index) if subcorpus in lst_of_subcorpora] if len(bad_years) == 0: import warnings warnings.warn('No subcorpora skipped.\n') else: if prinf: print 'Skipping %d subcorpora:\n %s' % (len(bad_years), '\n '.join([str(i) for i in bad_years[:10]])) if len(bad_years) > 10: print '... and %d more ... \n' % (len(bad_years) - 10) else: print '' df = df.drop([subcorpus for subcorpus in list(df.index) if subcorpus in bad_years], axis = 0) return df def span_these_subcorpora(df, lst_of_subcorpora, prinf = True): """select only a span of numerical suborpora (first, last)""" non_totals = [subcorpus for subcorpus in list(df.index)] good_years = [subcorpus for subcorpus in non_totals if int(subcorpus) >= int(lst_of_subcorpora[0]) and int(subcorpus) <= int(lst_of_subcorpora[-1])] if len(lst_of_subcorpora) == 0: import warnings warnings.warn('Span not identified.\n') else: if prinf: print 'Keeping subcorpora:\n %d--%d\n' % (int(lst_of_subcorpora[0]), int(lst_of_subcorpora[-1])) df = df.drop([subcorpus for subcorpus in list(df.index) if subcorpus not in good_years], axis = 0) # retotal needed here return df def projector(df, list_of_tuples, prinf = True): """project abs values""" if type(list_of_tuples) == list: tdict = {} for a, b in list_of_tuples: tdict[a] = b list_of_tuples = tdict for subcorpus, projection_value in list_of_tuples.items(): if type(subcorpus) == int: subcorpus = str(subcorpus) df.ix[subcorpus] = df.ix[subcorpus] * projection_value if prinf: if type(projection_value) == float: print 'Projection: %s * %s' % (subcorpus, projection_value) if type(projection_value) == int: print 'Projection: %s * %d' % (subcorpus, projection_value) if prinf: print '' return df def do_stats(df): """do linregress and add to df""" try: from scipy.stats import linregress except ImportError: from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: sort type not available in this verion of corpkit.' % thetime return False #from stats.stats import linregress entries = [] slopes = [] intercepts = [] rs = [] ps = [] stderrs = [] indices = list(df.index) first_year = list(df.index)[0] try: x = [int(y) - int(first_year) for y in indices] except ValueError: x = range(len(indices)) statfields = ['slope', 'intercept', 'r', 'p', 'stderr'] for entry in list(df.columns): entries.append(entry) y = list(df[entry]) slope, intercept, r, p, stderr = linregress(x, y) slopes.append(slope) intercepts.append(intercept) rs.append(r) ps.append(p) stderrs.append(stderr) sl = pd.DataFrame([slopes, intercepts, rs, ps, stderrs], index = statfields, columns = list(df.columns)) df = df.append(sl) # drop infinites and nans if operation != 'd': df = df.replace([np.inf, -np.inf], np.nan) df = df.fillna(0.0) return df def recalc(df, operation = '%'): statfields = ['slope', 'intercept', 'r', 'p', 'stderr'] """Add totals to the dataframe1""" #df.drop('Total', axis = 0, inplace = True) #df.drop('Total', axis = 1, inplace = True) try: df['temp-Total'] = df.drop(statfields).sum(axis = 1) except: df['temp-Total'] = df.sum(axis = 1) df = df.T try: df['temp-Total'] = df.drop(statfields).sum(axis = 1) except: df['temp-Total'] = df.sum(axis = 1) df = df.T return df def resort(df, sort_by = False, keep_stats = False): """sort results, potentially using scipy's linregress""" # translate options and make sure they are parseable options = ['total', 'name', 'infreq', 'increase', 'turbulent', 'decrease', 'static', 'most', 'least', 'none'] if sort_by is True: sort_by = 'total' if sort_by == 'most': sort_by = 'total' if sort_by == 'least': sort_by = 'infreq' if sort_by not in options: raise ValueError("sort_by parameter error: '%s' not recognised. Must be True, False, %s" % (sort_by, ', '.join(options))) if operation.startswith('k'): if type(df) == pandas.core.series.Series: if sort_by == 'total': df = df.order(ascending = False) elif sort_by == 'infreq': df = df.order(ascending = True) elif sort_by == 'name': df = df.sort_index() return df if just_totals: if sort_by == 'infreq': df = df.sort(columns = 'Combined total', ascending = True) elif sort_by == 'total': df = df.sort(columns = 'Combined total', ascending = False) elif sort_by == 'name': df = df.sort_index() return df # this is really shitty now that i know how to sort, like in the above if keep_stats: df = do_stats(df) if type(df) == bool: if df is False: return False if sort_by == 'total': if df1_istotals: df = df.T df = recalc(df, operation = operation) tot = df.ix['temp-Total'] df = df[tot.argsort()[::-1]] df = df.drop('temp-Total', axis = 0) df = df.drop('temp-Total', axis = 1) if df1_istotals: df = df.T elif sort_by == 'infreq': if df1_istotals: df = df.T df = recalc(df, operation = operation) tot = df.ix['temp-Total'] df = df[tot.argsort()] df = df.drop('temp-Total', axis = 0) df = df.drop('temp-Total', axis = 1) if df1_istotals: df = df.T elif sort_by == 'name': # currently case sensitive... df = df.reindex_axis(sorted(df.columns), axis=1) else: statfields = ['slope', 'intercept', 'r', 'p', 'stderr'] if not keep_stats: df = do_stats(df) if type(df) == bool: if df is False: return False slopes = df.ix['slope'] if sort_by == 'increase': df = df[slopes.argsort()[::-1]] elif sort_by == 'decrease': df = df[slopes.argsort()] elif sort_by == 'static': df = df[slopes.abs().argsort()] elif sort_by == 'turbulent': df = df[slopes.abs().argsort()[::-1]] if remove_above_p: # the easy way to do it! df = df.T df = df[df['p'] <= p] df = df.T # remove stats field by default if not keep_stats: df = df.drop(statfields, axis = 0) return df def set_threshold(big_list, threshold, prinf = True, for_keywords = False): if type(threshold) == str: if threshold.startswith('l'): denominator = 10000 if threshold.startswith('m'): denominator = 5000 if threshold.startswith('h'): denominator = 2500 if type(big_list) == pandas.core.frame.DataFrame: tot = big_list.sum().sum() if type(big_list) == pandas.core.series.Series: tot = big_list.sum() the_threshold = float(tot) / float(denominator) #if for_keywords: #the_threshold = the_threshold / 2 else: the_threshold = threshold if prinf: print 'Threshold: %d\n' % the_threshold return the_threshold # check if we're in concordance mode try: if list(dataframe1.columns) == ['l', 'm', 'r']: conc_lines = True else: conc_lines = False except: conc_lines = False # copy dataframe to be very safe try: df = dataframe1.copy() except AttributeError: no_good_dataframe1 = True while no_good_dataframe1: if 'interrogation' in str(type(dataframe1)): sel = raw_input("\nIt looks like you're trying to edit an interrogation, " \ "rather than an interrogation's .results or .totals branch. You can:\n\n a) select .results branch\n b) select .totals branch\n c) exit\n\nYour choice: ") if sel.startswith('a'): try: dataframe1 = dataframe1.results no_good_dataframe1 = False except: pass elif sel.startswith('b'): try: dataframe1 = dataframe1.totals no_good_dataframe1 = False except: pass else: return else: raise ValueError("Thing to be edited (dataframe1) needs to be a Pandas DataFrame or Series. " \ "Right now, its type is: '%s'." % type(dataframe1).__name__) df = dataframe1.copy() # make cols into strings try: df.columns = [str(c) for c in list(df.columns)] except: pass if operation is None: operation = 'None' # do concordance work if conc_lines: df = dataframe1.copy() if just_entries: if type(just_entries) == int: just_entries = [just_entries] if type(just_entries) == str: df = df[df['m'].str.contains(just_entries)] if type(just_entries) == list: if type(just_entries[0]) == str: regex = re.compile(r'(?i)^(' + r'|'.join(just_entries) + r')$') df = df[df['m'].str.contains(regex)] else: df = df.ix[just_entries].reset_index(drop = True) if skip_entries: if type(skip_entries) == int: skip_entries = [skip_entries] if type(skip_entries) == str: df = df[~df['m'].str.contains(skip_entries)] if type(skip_entries) == list: if type(skip_entries[0]) == str: regex = re.compile(r'(?i)^(' + r'|'.join(skip_entries) + r')$') df = df[~df['m'].str.contains(regex)] else: df = df.ix[[e for e in list(df.index) if e not in skip_entries]].reset_index(drop = True) return df if print_info: print '\n***Processing results***\n========================\n' df1_istotals = False if type(df) == pandas.core.series.Series: df1_istotals = True df = pandas.DataFrame(df) # if just a single result else: df = pandas.DataFrame(df) if operation.startswith('k'): if sort_by is False: if not df1_istotals: sort_by = 'turbulent' if df1_istotals: df = df.T # figure out if there's a second list # copy and remove totals if there is single_totals = True using_totals = False outputmode = False try: if dataframe2.empty is False: df2 = dataframe2.copy() using_totals = True if type(df2) == pandas.core.frame.DataFrame: if len(df2.columns) > 1: single_totals = False else: df2 = pd.Series(df2) if operation == 'd': df2 = df2.sum(axis = 1) single_totals = True elif type(df2) == pandas.core.series.Series: single_totals = True #if operation == 'k': #raise ValueError('Keywording requires a DataFrame for dataframe2. Use "self"?') else: raise ValueError('dataframe2 not recognised.') except AttributeError: if operation in ['k', 'd', 'a', '%', '/', '*', '-', '+']: dataframe2 = 'self' if dataframe2 == 'self': outputmode = True if operation.startswith('a') or operation.startswith('A'): if list(df.columns)[0] != '0' and list(df.columns)[0] != 0: df = df.T if using_totals: if not single_totals: df2 = df2.T if projection: # projection shouldn't do anything when working with '%', remember. df = projector(df, projection) if using_totals: df2 = projector(df2, projection) if spelling: df = convert_spell(df, convert_to = spelling) df = merge_duplicates(df, print_info = False) if not single_totals: df2 = convert_spell(df2, convert_to = spelling, print_info = False) df2 = merge_duplicates(df2, print_info = False) if not df1_istotals: sort_by = 'total' if replace_names: df = name_replacer(df, replace_names) df = merge_duplicates(df) if not single_totals: df2 = name_replacer(df2, print_info = False) df2 = merge_duplicates(df2, print_info = False) if not sort_by: sort_by = 'total' # remove old stats if they're there: statfields = ['slope', 'intercept', 'r', 'p', 'stderr'] try: df = df.drop(statfields, axis = 0) except: pass if using_totals: try: df2 = df2.drop(statfields, axis = 0) except: pass # remove totals and tkinter order for name, ax in zip(['Total'] * 2 + ['tkintertable-order'] * 2, [0, 1, 0, 1]): try: df = df.drop(name, axis = ax, errors = 'ignore') except: pass for name, ax in zip(['Total'] * 2 + ['tkintertable-order'] * 2, [0, 1, 0, 1]): try: df2 = df2.drop(name, axis = ax, errors = 'ignore') except: pass # merging: make dicts if they aren't already, so we can iterate if merge_entries: if type(merge_entries) != list: if type(merge_entries) == str or type(merge_entries) == unicode: merge_entries = {newname: merge_entries} # for newname, criteria for name, the_input in sorted(merge_entries.items()): the_newname = newname_getter(df, parse_input(df, the_input), newname = name, prinf = print_info) df = merge_these_entries(df, parse_input(df, the_input), the_newname, prinf = print_info) if not single_totals: df2 = merge_these_entries(df2, parse_input(df2, the_input), the_newname, prinf = False) else: for i in merge_entries: the_newname = newname_getter(df, parse_input(df, merge_entries), newname = newname, prinf = print_info) df = merge_these_entries(df, parse_input(df, merge_entries), the_newname, prinf = print_info) if not single_totals: df2 = merge_these_entries(df2, parse_input(df2, merge_entries), the_newname, prinf = False) if merge_subcorpora: if type(merge_subcorpora) != dict: if type(merge_subcorpora) == list: if type(merge_subcorpora[0]) == tuple: merge_subcorpora = {x: y for x, y in merge_subcorpora} elif type(merge_subcorpora[0]) == str or type(merge_subcorpora[0]) == unicode: merge_subcorpora = {new_subcorpus_name: [x for x in merge_subcorpora]} elif type(merge_subcorpora[0]) == int: merge_subcorpora = {new_subcorpus_name: [str(x) for x in merge_subcorpora]} else: merge_subcorpora = {new_subcorpus_name: merge_subcorpora} for name, the_input in sorted(merge_subcorpora.items()): the_newname = newname_getter(df.T, parse_input(df.T, the_input), newname = name, merging_subcorpora = True, prinf = print_info) df = merge_these_entries(df.T, parse_input(df.T, the_input), the_newname, merging = 'subcorpora', prinf = print_info).T if using_totals: df2 = merge_these_entries(df2.T, parse_input(df2.T, the_input), the_newname, merging = 'subcorpora', prinf = False).T if just_subcorpora: df = just_these_subcorpora(df, just_subcorpora, prinf = print_info) if using_totals: df2 = just_these_subcorpora(df2, just_subcorpora, prinf = False) if skip_subcorpora: df = skip_these_subcorpora(df, skip_subcorpora, prinf = print_info) if using_totals: df2 = skip_these_subcorpora(df2, skip_subcorpora, prinf = False) if span_subcorpora: df = span_these_subcorpora(df, span_subcorpora, prinf = print_info) if using_totals: df2 = span_these_subcorpora(df2, span_subcorpora, prinf = False) if just_entries: df = just_these_entries(df, parse_input(df, just_entries), prinf = print_info) if not single_totals: df2 = just_these_entries(df2, parse_input(df2, just_entries), prinf = False) if skip_entries: df = skip_these_entries(df, parse_input(df, skip_entries), prinf = print_info) if not single_totals: df2 = skip_these_entries(df2, parse_input(df2, skip_entries), prinf = False) # drop infinites and nans if operation != 'd': df = df.replace([np.inf, -np.inf], np.nan) df = df.fillna(0.0) # make just_totals as dataframe just_one_total_number = False if just_totals: df = pd.DataFrame(df.sum(), columns = ['Combined total']) if using_totals: if not single_totals: df2 = pd.DataFrame(df2.sum(), columns = ['Combined total']) else: just_one_total_number = True df2 = df2.sum() tots = df.sum(axis = 1) if using_totals or outputmode: if not operation.startswith('k'): the_threshold = 0 # set a threshold if just_totals if outputmode is True: df2 = df.T.sum() if not just_totals: df2.name = 'Total' else: df2.name = 'Combined total' using_totals = True single_totals = True if just_totals: if not single_totals: the_threshold = set_threshold(df2, threshold, prinf = print_info) if operation == 'd': the_threshold = set_threshold(df2, threshold, prinf = print_info) df, tots = combiney(df, df2, operation = operation, threshold = the_threshold, prinf = print_info) # if doing keywording... if operation.startswith('k'): from keys import keywords # allow saved dicts to be df2, etc try: if dataframe2 == 'self': df2 = df.copy() except TypeError: pass if type(dataframe2) == str: if dataframe2 != 'self': df2 = dataframe2 else: the_threshold = False df = keywords(df, df2, selfdrop = selfdrop, threshold = threshold, printstatus = print_info, editing = True, calc_all = calc_all, **kwargs) # eh? df = df.T # drop infinites and nans if operation != 'd': df = df.replace([np.inf, -np.inf], np.nan) df = df.fillna(0.0) # resort data if sort_by: df = resort(df, keep_stats = keep_stats, sort_by = sort_by) if type(df) == bool: if df is False: return 'linregress' if keep_top: if not just_totals: df = df[list(df.columns)[:keep_top]] else: df = df.head(keep_top) if just_totals: # turn just_totals into series: df = pd.Series(df['Combined total'], name = 'Combined total') if df1_istotals: if operation.startswith('k'): try: df = pd.Series(df.ix[dataframe1.name]) df.name = '%s: keyness' % df.name except: df = df.iloc[0,:] df.name = 'keyness' % df.name # generate totals branch if not percentage results: # fix me if df1_istotals or operation.startswith('k'): if not just_totals: try: total = pd.Series(df['Total'], name = 'Total') except: pass total = 'none' #total = df.copy() else: total = 'none' else: # might be wrong if using division or something... try: total = df.T.sum(axis = 1) except: total = 'none' if type(tots) != pandas.core.frame.DataFrame and type(tots) != pandas.core.series.Series: total = df.sum(axis = 1) else: total = tots if type(df) == pandas.core.frame.DataFrame: datatype = df.ix[0].dtype else: datatype = df.dtype # TURN INT COL NAMES INTO STR try: df.results.columns = [str(d) for d in list(df.results.columns)] except: pass def add_tkt_index(df): if type(df) != pandas.core.series.Series: df = df.T df = df.drop('tkintertable-order', errors = 'ignore', axis = 0) df = df.drop('tkintertable-order', errors = 'ignore', axis = 1) df['tkintertable-order'] = pd.Series([index for index, data in enumerate(list(df.index))], index = list(df.index)) df = df.T return df # while tkintertable can't sort rows from corpkit.tests import check_t_kinter tk = check_t_kinter() if tk: df = add_tkt_index(df) if 'df1_always_df' in kwargs.keys(): if kwargs['df1_always_df'] is True: if type(df) == pandas.core.series.Series: df = pandas.DataFrame(df) #make named_tuple the_operation = 'none' if using_totals: the_operation = operation the_options = {} the_options['time_started'] = the_time_started the_options['function'] = 'editor' the_options['dataframe1'] = dataframe1 the_options['operation'] = the_operation the_options['dataframe2'] = dataframe2 the_options['datatype'] = datatype the_options['sort_by'] = sort_by the_options['keep_stats'] = keep_stats the_options['just_totals'] = just_totals the_options['threshold'] = threshold # can be wrong! the_options['just_entries'] = just_entries the_options['just_entries'] = just_entries the_options['skip_entries'] = skip_entries the_options['merge_entries'] = merge_entries the_options['newname'] = newname the_options['just_subcorpora'] = just_subcorpora the_options['skip_subcorpora'] = skip_subcorpora the_options['span_subcorpora'] = span_subcorpora the_options['merge_subcorpora'] = merge_subcorpora the_options['new_subcorpus_name'] = new_subcorpus_name the_options['projection'] = projection the_options['remove_above_p'] = remove_above_p the_options['p'] = p the_options['revert_year'] = revert_year the_options['print_info'] = print_info outputnames = collections.namedtuple('edited_interrogation', ['query', 'results', 'totals']) output = outputnames(the_options, df, total) #print '\nResult (sample)\n' if print_info: #if merge_entries or merge_subcorpora or span_subcorpora or just_subcorpora or \ #just_entries or skip_entries or skip_subcorpora or printed_th or projection: print '***Done!***\n========================\n' #print df.head().T #print '' if operation.startswith('k') or just_totals or df1_istotals: pd.set_option('display.max_rows', 30) else: pd.set_option('display.max_rows', 15) pd.set_option('display.max_columns', 8) pd.set_option('max_colwidth',70) pd.set_option('display.width', 800) pd.set_option('expand_frame_repr', False) pd.set_option('display.float_format', lambda x: '%.2f' % x) return output
def _edit(self, *args, **kwargs): from corpkit.editor import editor return editor(self, *args, **kwargs)
def _keyness(self, measure='ll', denominator='self', **kwargs): from corpkit.editor import editor return editor(self, 'k', denominator, **kwargs)
def _rel(self, denominator='self', **kwargs): from corpkit.editor import editor return editor(self, '%', denominator, **kwargs)
def edit(self, *args, **kwargs): """Manipulate results of interrogations. There are a few overall kinds of edit, most of which can be combined into a single function call. It's useful to keep in mind that many are basic wrappers around `pandas` operations---if you're comfortable with `pandas` syntax, it may be faster at times to use its syntax instead. :Basic mathematical operations: First, you can do basic maths on results, optionally passing in some data to serve as the denominator. Very commonly, you'll want to get relative frequencies: :Example: >>> data = corpus.interrogate({W: r'^t'}) >>> rel = data.edit('%', SELF) >>> rel.results .. to that the then ... toilet tolerant tolerate ton 01 18.50 14.65 14.44 6.20 ... 0.00 0.00 0.11 0.00 02 24.10 14.34 13.73 8.80 ... 0.00 0.00 0.00 0.00 03 17.31 18.01 9.97 7.62 ... 0.00 0.00 0.00 0.00 For the operation, there are a number of possible values, each of which is to be passed in as a `str`: `+`, `-`, `/`, `*`, `%`: self explanatory `k`: calculate keywords `a`: get distance metric `SELF` is a very useful shorthand denominator. When used, all editing is performed on the data. The totals are then extracted from the edited data, and used as denominator. If this is not the desired behaviour, however, a more specific `interrogation.results` or `interrogation.totals` attribute can be used. In the example above, `SELF` (or `'self'`) is equivalent to: :Example: >>> rel = data.edit('%', data.totals) :Keeping and skipping data: There are four keyword arguments that can be used to keep or skip rows or columns in the data: * `just_entries` * `just_subcorpora` * `skip_entries` * `skip_subcorpora` Each can accept different input types: * `str`: treated as regular expression to match * `list`: * of integers: indices to match * of strings: entries/subcorpora to match :Example: >>> data.edit(just_entries=r'^fr', ... skip_entries=['free','freedom'], ... skip_subcorpora=r'[0-9]') :Merging data: There are also keyword arguments for merging entries and subcorpora: * `merge_entries` * `merge_subcorpora` These take a `dict`, with the new name as key and the criteria as value. The criteria can be a str (regex) or wordlist. :Example: >>> from dictionaries.wordlists import wordlists >>> mer = {'Articles': ['the', 'an', 'a'], 'Modals': wordlists.modals} >>> data.edit(merge_entries=mer) :Sorting: The `sort_by` keyword argument takes a `str`, which represents the way the result columns should be ordered. * `increase`: highest to lowest slope value * `decrease`: lowest to highest slope value * `turbulent`: most change in y axis values * `static`: least change in y axis values * `total/most`: largest number first * `infreq/least`: smallest number first * `name`: alphabetically :Example: >>> data.edit(sort_by='increase') :Editing text: Column labels, corresponding to individual interrogation results, can also be edited with `replace_names`. :param replace_names: Edit result names, then merge duplicate entries :type replace_names: `str`/`list of tuples`/`dict` If `replace_names` is a string, it is treated as a regex to delete from each name. If `replace_names` is a dict, the value is the regex, and the key is the replacement text. Using a list of tuples in the form `(find, replacement)` allows duplicate substitution values. :Example: >>> data.edit(replace_names={r'object': r'[di]obj'}) :param replace_subcorpus_names: Edit subcorpus names, then merge duplicates. The same as `replace_names`, but on the other axis. :type replace_subcorpus_names: `str`/`list of tuples`/`dict` :Other options: There are many other miscellaneous options. :param keep_stats: Keep/drop stats values from dataframe after sorting :type keep_stats: `bool` :param keep_top: After sorting, remove all but the top *keep_top* results :type keep_top: `int` :param just_totals: Sum each column and work with sums :type just_totals: `bool` :param threshold: When using results list as dataframe 2, drop values occurring fewer than n times. If not keywording, you can use: `'high'`: `denominator total / 2500` `'medium'`: `denominator total / 5000` `'low'`: `denominator total / 10000` If keywording, there are smaller default thresholds :type threshold: `int`/`bool` :param span_subcorpora: If subcorpora are numerically named, span all from *int* to *int2*, inclusive :type span_subcorpora: `tuple` -- `(int, int2)` :param projection: multiply results in subcorpus by n :type projection: tuple -- `(subcorpus_name, n)` :param remove_above_p: Delete any result over `p` :type remove_above_p: `bool` :param p: set the p value :type p: `float` :param revert_year: When doing linear regression on years, turn annual subcorpora into 1, 2 ... :type revert_year: `bool` :param print_info: Print stuff to console showing what's being edited :type print_info: `bool` :param spelling: Convert/normalise spelling: :type spelling: `str` -- `'US'`/`'UK'` :Keywording options: If the operation is `k`, you're calculating keywords. In this case, some other keyword arguments have an effect: :param keyword_measure: what measure to use to calculate keywords: `ll`: log-likelihood `pd': percentage difference type keyword_measure: `str` :param selfdrop: When keywording, try to remove target corpus from reference corpus :type selfdrop: `bool` :param calc_all: When keywording, calculate words that appear in either corpus :type calc_all: `bool` :returns: :class:`corpkit.interrogation.Interrogation` """ from corpkit.editor import editor return editor(self, *args, **kwargs)
def pmultiquery(path, option = 'c', query = 'any', sort_by = 'total', quicksave = False, num_proc = 'default', function_filter = False, **kwargs): """Parallel process multiple queries or corpora. This function is used by interrogator if: a) path is a list of paths b) query is a dict of named queries. This function needs joblib 0.8.4 or above in order to run properly.""" import collections import os import pandas import pandas as pd from collections import namedtuple from time import strftime, localtime from corpkit.interrogator import interrogator from corpkit.editor import editor from corpkit.other import save_result try: from joblib import Parallel, delayed except: raise ValueError('joblib, the module used for multiprocessing, cannot be found. ' \ 'Install with:\n\n pip install joblib') import multiprocessing num_cores = multiprocessing.cpu_count() def best_num_parallel(num_cores, num_queries): """decide how many parallel processes to run the idea, more or less, is to """ if num_queries <= num_cores: return num_queries if num_queries > num_cores: if (num_queries / num_cores) == num_cores: return int(num_cores) if num_queries % num_cores == 0: return max([int(num_queries / n) for n in range(2, num_cores) if int(num_queries / n) <= num_cores]) else: import math if (float(math.sqrt(num_queries))).is_integer(): square_root = math.sqrt(num_queries) if square_root <= num_queries / num_cores: return int(square_root) return num_queries / ((num_queries / num_cores) + 1) # are we processing multiple queries or corpora? # find out optimal number of cores to use. multiple_option = False multiple_corpora = False if type(path) != str: multiple_corpora = True num_cores = best_num_parallel(num_cores, len(path)) elif type(query) != str: multiple_corpora = False num_cores = best_num_parallel(num_cores, len(query)) elif type(function_filter) != str: multiple_option = True num_cores = best_num_parallel(num_cores, len(function_filter.keys())) if num_proc != 'default': num_cores = num_proc # make sure quicksaves are right type if quicksave is True: raise ValueError('quicksave must be string when using pmultiquery.') # the options that don't change d = {'option': option, 'paralleling': True, 'function': 'interrogator'} # add kwargs to query for k, v in kwargs.items(): d[k] = v # make a list of dicts to pass to interrogator, # with the iterable unique in every one ds = [] if multiple_corpora and not multiple_option: path = sorted(path) for index, p in enumerate(path): name = os.path.basename(p) a_dict = dict(d) a_dict['path'] = p a_dict['query'] = query a_dict['outname'] = name a_dict['printstatus'] = False ds.append(a_dict) elif not multiple_corpora and not multiple_option: import collections for index, (name, q) in enumerate(query.items()): a_dict = dict(d) a_dict['path'] = path a_dict['query'] = q a_dict['outname'] = name a_dict['printstatus'] = False ds.append(a_dict) elif multiple_option: import collections for index, (name, q) in enumerate(function_filter.items()): a_dict = dict(d) a_dict['path'] = path a_dict['query'] = query a_dict['outname'] = name a_dict['function_filter'] = q a_dict['printstatus'] = False ds.append(a_dict) time = strftime("%H:%M:%S", localtime()) if multiple_corpora and not multiple_option: print ("\n%s: Beginning %d parallel corpus interrogations:\n %s" \ "\n Query: '%s'" \ "\n Interrogating corpus ... \n" % (time, num_cores, "\n ".join(path), query) ) elif not multiple_corpora and not multiple_option: print ("\n%s: Beginning %d parallel corpus interrogations: %s" \ "\n Queries: '%s'" \ "\n Interrogating corpus ... \n" % (time, num_cores, path, "', '".join(query.values())) ) elif multiple_option: print ("\n%s: Beginning %d parallel corpus interrogations (multiple options): %s" \ "\n Query: '%s'" \ "\n Interrogating corpus ... \n" % (time, num_cores, path, query) ) # run in parallel, get either a list of tuples (non-c option) # or a dataframe (c option) res = Parallel(n_jobs=num_cores)(delayed(interrogator)(**x) for x in ds) res = sorted(res) # turn list into dict of results, make query and total branches, # save and return if not option.startswith('c'): out = {} print '' for (name, data), d in zip(res, ds): if not option.startswith('k'): outputnames = collections.namedtuple('interrogation', ['query', 'results', 'totals']) stotal = data.sum(axis = 1) stotal.name = u'Total' output = outputnames(d, data, stotal) else: outputnames = collections.namedtuple('interrogation', ['query', 'results']) output = outputnames(d, data) out[name] = output # could be wrong for unstructured corpora? num_diff_results = len(data) time = strftime("%H:%M:%S", localtime()) print "\n%s: Finished! Output is a dictionary with keys:\n\n '%s'\n" % (time, "'\n '".join(sorted(out.keys()))) if quicksave: for k, v in out.items(): save_result(v, k, savedir = 'data/saved_interrogations/%s' % quicksave) return out # make query and total branch, save, return else: out = pd.concat(res, axis = 1) out = editor(out, sort_by = sort_by, print_info = False, keep_stats = False) time = strftime("%H:%M:%S", localtime()) print '\n%s: Finished! %d unique results, %d total.' % (time, len(out.results.columns), out.totals.sum()) if quicksave: from corpkit.other import save_result save_result(out, quicksave) return out
def interroplot(path, query): """Interrogates path with Tregex query, gets relative frequencies, and plots the top seven results""" from corpkit import interrogator, editor, plotter quickstart = interrogator(path, 'words', query) edited = editor(quickstart.results, '%', quickstart.totals, print_info = False) plotter(str(path), edited.results)