Пример #1
0
 def as_regex(self,
              boundaries='w',
              case_sensitive=False,
              inverse=False,
              compile=False):
     """
     Turn list into regular expression matching any item in list
     """
     from corpkit.other import as_regex
     return as_regex(get_both_spellings(self.data),
                     boundaries=boundaries,
                     case_sensitive=case_sensitive,
                     inverse=inverse,
                     compile=compile)
Пример #2
0
def filtermaker(the_filter, case_sensitive=False, **kwargs):
    import re
    from corpkit.dictionaries.process_types import Wordlist
    from time import localtime, strftime
    root = kwargs.get('root')
    if isinstance(the_filter, (list, Wordlist)):
        from corpkit.other import as_regex
        the_filter = as_regex(the_filter, case_sensitive=case_sensitive)
    try:
        output = re.compile(the_filter)
        is_valid = True
    except:
        is_valid = False
        if root:
            import traceback
            import sys
            exc_type, exc_value, exc_traceback = sys.exc_info()
            lst = traceback.format_exception(exc_type, exc_value, exc_traceback)
            error_message = lst[-1]
            thetime = strftime("%H:%M:%S", localtime())
            print('%s: Filter %s' % (thetime, error_message))
            return 'Bad query'
    
    while not is_valid:
        if root:
            time = strftime("%H:%M:%S", localtime())
            print(the_filter)
            print('%s: Invalid the_filter regular expression.' % time)
            return False
        time = strftime("%H:%M:%S", localtime())
        selection = INPUTFUNC('\n%s: filter regular expression " %s " contains an error. You can either:\n\n' \
            '              a) rewrite it now\n' \
            '              b) exit\n\nYour selection: ' % (time, the_filter))
        if 'a' in selection:
            the_filter = INPUTFUNC('\nNew regular expression: ')
            try:
                output = re.compile(r'\b' + the_filter + r'\b')
                is_valid = True
            except re.error:
                is_valid = False
        elif 'b' in selection:
            print('')
            return False
    return output
Пример #3
0
def filtermaker(the_filter, case_sensitive = False):
    import re
    if type(the_filter) == list:
        from corpkit.other import as_regex
        the_filter = as_regex(the_filter, case_sensitive = case_sensitive)
    try:
        output = re.compile(the_filter)
        is_valid = True
    except:
        is_valid = False
        if root:
            import traceback
            import sys
            exc_type, exc_value, exc_traceback = sys.exc_info()
            lst = traceback.format_exception(exc_type, exc_value,
                          exc_traceback)
            error_message = lst[-1]
            thetime = strftime("%H:%M:%S", localtime())
            print '%s: Filter %s' % (thetime, error_message)
            return 'Bad query'
    
    while not is_valid:
        if root:
            time = strftime("%H:%M:%S", localtime())
            print the_filter
            print '%s: Invalid the_filter regular expression.' % time
            return False
        time = strftime("%H:%M:%S", localtime())
        selection = raw_input('\n%s: filter regular expression " %s " contains an error. You can either:\n\n' \
            '              a) rewrite it now\n' \
            '              b) exit\n\nYour selection: ' % (time, the_filter))
        if 'a' in selection:
            the_filter = raw_input('\nNew regular expression: ')
            try:
                output = re.compile(r'\b' + the_filter + r'\b')
                is_valid = True
            except re.error:
                is_valid = False
        elif 'b' in selection:
            print ''
            return False
    return output
Пример #4
0
def to_cql(dquery, exclude=False, **kwargs):
    """
    Turn dictionary query into cql format
    """
    qlist = []
    from corpkit.constants import transobjs, transshow
    if exclude:
        operator = '!='
    else:
        operator = '='
    for k, v in dquery.items():
        obj, show = transobjs.get(k[0]), transshow.get(k[1])
        if obj == 'Match':
            form_bit = '{}{}'.format(show.lower(), operator)
        else:
            form_bit = '{}-{}{}'.format(obj.lower(), show.lower(), operator)
        v = getattr(v, 'pattern', v)
        if isinstance(v, list):
            v = as_regex(v, **kwargs)
        form_bit += '"{}"'.format(v)
        qlist.append(form_bit)
    return '[' + ' & '.join(qlist) + ']'
Пример #5
0
def conc(corpus, query, 
        n = 100, 
        random = False, 
        window = 40, 
        trees = False,
        plaintext = 'guess',
        add_links = False,
        show_links = False): 
    """A concordancer for Tregex queries over trees or regexes over plain text"""
    import os
    import re
    import pandas as pd
    from pandas import DataFrame
    from time import localtime, strftime
    
    try:
        from IPython.display import display, clear_output
    except ImportError:
        pass
    from corpkit.other import tregex_engine
    from corpkit.tests import check_pytex, check_dit
    try:
        get_ipython().getoutput()
    except TypeError:
        have_ipython = True
    except NameError:
        import subprocess
        have_ipython = False
    
    # convert list to query
    if type(query) == list:
        from corpkit.other import as_regex
        query = r'/%s/ !< __' % as_regex(query, boundaries = 'line')
    
    # lazy, daniel!
    if window == 'all':
        window = 9999

    # check query
    good_tregex_query = tregex_engine(query, check_query = True)
    if good_tregex_query is False:
        return

    # make sure there's a corpus
    if not os.path.exists(corpus):
        raise ValueError('Corpus file or folder not found: %s' % corpus)

    # welcome message
    time = strftime("%H:%M:%S", localtime())
    print "\n%s: Getting concordances for %s ... \n          Query: %s\n" % (time, corpus, query)
    output = []

    if plaintext == 'guess':
        if not tregex_engine(corpus = corpus, check_for_trees = True):
            plaintext = True
        else:
            plaintext = False

    if trees:
        options = '-s'
    else:
        options = '-t'
    if not plaintext:
        whole_results = tregex_engine(query, 
                                  options = ['-o', '-w', options], 
                                  corpus = corpus)
        middle_column_result = tregex_engine(query, 
                                  options = ['-o', options], 
                                  corpus = corpus)
    
    if plaintext:
        import nltk
        sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
        whole_results = []
        middle_column_result = []
        small_regex = re.compile(query)
        big_regex = re.compile(r'.*' + query + r'.*')
        fs = [os.path.join(corpus, f) for f in os.listdir(corpus)]
        # do recursive if need
        if any(os.path.isdir(f) for f in fs):
            recursive_files = []
            for dirname, dirnames, filenames in os.walk(corpus):
                for filename in filenames:
                    recursive_files.append(os.path.join(dirname, filename))
            fs = recursive_files
        for f in fs:
            raw = open(f).read().replace('\n', ' ')
            # encoding ... ?
            sents = sent_tokenizer.tokenize(raw)
            for sent in sents:
                try:
                    for match in re.findall(small_regex, raw):
                        middle_column_result.append(match)
                        whole_results.append(sent)
                except:
                    continue

    try:
        # get longest middle column result, or discover no results and raise error
        maximum = len(max(middle_column_result, key=len))
    except ValueError:
        time = strftime("%H:%M:%S", localtime())
        print "\n%s: No matches found." % time
        return

    zipped = zip(whole_results, middle_column_result)
    unique_results = []

    for whole_result, middle_part in zipped:
        if not trees:
            regex = re.compile(r"(\b[^\s]{0,1}.{," + re.escape(str(window)) + r"})(\b" + re.escape(middle_part) + r"\b)(.{," + re.escape(str(window)) + r"}[^\s]\b)")
        else:
            regex = re.compile(r"(.{,%s})(%s)(.{,%s})" % (window, re.escape(middle_part), window ))
        search = re.findall(regex, whole_result)
        for result in search:
            unique_results.append(result)
    unique_results = set(sorted(unique_results)) # make unique
    
    #make into series
    series = []

    lname = ' ' * (window/2-1) + 'l'
    # centering middle column
    #mname = ' ' * (maximum/2+1) + 'm'
    mname = ' ' * (maximum/2-1) + 'm'
    rname = ' ' * (window/2-1) + 'r'
    for start, word, end in unique_results:
        #spaces = ' ' * (maximum / 2 - (len(word) / 2))
        #new_word = spaces + word + spaces
        series.append(pd.Series([start.encode('utf-8', errors = 'ignore'), word.encode('utf-8', errors = 'ignore'), end.encode('utf-8', errors = 'ignore')], index = [lname.encode('utf-8', errors = 'ignore'), mname.encode('utf-8', errors = 'ignore'), rname.encode('utf-8', errors = 'ignore')]))

    # randomise results...
    if random:
        from random import shuffle
        shuffle(series)

    try:
        df = pd.concat(series, axis = 1).T
    except ValueError:
        raise ValueError("No results found, I'm afraid. Check your query and path.")

    if add_links:

        def _add_links(lines, links = False, show = 'thread'):
            link = "http://www.healthboards.com/boards/bipolar-disorder/695089-labels.html"
            linktext = '<a href="%s>link</a>' % link
            import pandas as pd
            inds = list(df.index)
            num_objects = len(list(df.index))
            ser = pd.Series([link for n in range(num_objects)], index = inds)
            lines['link'] = ser
            return lines
        
        df = _add_links(df)
        
    # make temporary
    pd.set_option('display.max_columns', 500)
    pd.set_option('max_colwidth',window * 2)
    pd.set_option('display.width', 1000)
    pd.set_option('expand_frame_repr', False)
    pd.set_option('colheader_justify', 'left')
    if add_links:
        if not show_links:
            print df.drop('link', axis = 1).head(n).to_string(header = False, formatters={rname:'{{:<{}s}}'.format(df[rname].str.len().max()).format})
        else:
            print HTML(df.to_html(escape=False))
    else:
        print df.head(n).to_string(header = False, formatters={rname:'{{:<{}s}}'.format(df[rname].str.len().max()).format})

    if not add_links:
        df.columns = ['l', 'm', 'r']
    else:
        df.columns = ['l', 'm', 'r', 'link']
    return df

# r'/NN.?/ < /(?i)\brisk/ $ (/NN.?/ < /(?i)factor >># NP)' 
Пример #6
0
    def get_tregex_values(show):
        """If using Tregex, set appropriate values

        - Check for valid query
        - Make 'any' query
        - Make list query
        """

        translated_option = 't'
        if isinstance(search['t'], Wordlist):
            search['t'] = list(search['t'])
        q = tregex_engine(corpus=False,
                          query=search.get('t'),
                          options=['-t'],
                          check_query=True,
                          root=root,
                          preserve_case=preserve_case
                         )

        # so many of these bad fixing loops!
        nshow = []
        for i in show:
            if i == 'm':
                nshow.append('w')
            else:
                nshow.append(i.lstrip('m'))
        show = nshow

        if q is False:
            if root:
                return 'Bad query', None
            else:
                return 'Bad query', None

        if isinstance(search['t'], list):
            regex = as_regex(search['t'], boundaries='line', case_sensitive=case_sensitive)
        else:
            regex = ''

        # listquery, anyquery, translated_option
        treg_dict = {'p': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'],
                     'pl': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'],
                     'x': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'u'],
                     't': [r'__ < (/%s/ !< __)' % regex, r'__ < (/.?[A-Za-z0-9].?/ !< __)', 'o'],
                     'w': [r'/%s/ !< __' % regex, r'/.?[A-Za-z0-9].?/ !< __', 't'],
                     'c': [r'/%s/ !< __'  % regex, r'/.?[A-Za-z0-9].?/ !< __', 'C'],
                     'l': [r'/%s/ !< __'  % regex, r'/.?[A-Za-z0-9].?/ !< __', 't'],
                     'u': [r'/%s/ !< __'  % regex, r'/.?[A-Za-z0-9].?/ !< __', 'v']
                    }

        newshow = []

        listq, anyq, translated_option = treg_dict.get(show[0][-1].lower())
        newshow.append(translated_option)
        for item in show[1:]:
            _, _, noption = treg_dict.get(item.lower())
            newshow.append(noption)

        if isinstance(search['t'], list):
            search['t'] = listq
        elif search['t'] == 'any':   
            search['t'] = anyq
        return search['t'], newshow
Пример #7
0
def interrogator(
    corpus,
    search,
    query="any",
    show="w",
    exclude=False,
    excludemode="any",
    searchmode="all",
    dep_type="collapsed-ccprocessed-dependencies",
    case_sensitive=False,
    quicksave=False,
    just_speakers=False,
    preserve_case=False,
    lemmatag=False,
    files_as_subcorpora=False,
    conc=False,
    only_unique=False,
    random=False,
    only_format_match=False,
    multiprocess=False,
    spelling=False,
    regex_nonword_filter=r"[A-Za-z0-9:_]",
    gramsize=2,
    split_contractions=False,
    **kwargs
):
    """interrogate corpus, corpora, subcorpus and file objects

    see corpkit.interrogation.interrogate() for docstring"""
    # store kwargs
    locs = locals()

    from corpkit.interrogation import Interrogation
    from corpkit.process import tregex_engine
    import pandas as pd
    from pandas import DataFrame, Series
    from collections import Counter
    from corpkit.other import as_regex
    from corpkit.process import get_deps
    from time import localtime, strftime

    thetime = strftime("%H:%M:%S", localtime())
    from corpkit.textprogressbar import TextProgressBar
    from corpkit.process import animator
    from corpkit.dictionaries.word_transforms import wordlist, taglemma

    # find out if using gui
    root = kwargs.get("root")
    note = kwargs.get("note")

    # convert path to corpus object
    if type(corpus) == str:
        from corpkit.corpus import Corpus

        corpus = Corpus(corpus)

    # figure out how the user has entered the query and normalise
    from corpkit.process import searchfixer

    search, search_iterable = searchfixer(search, query)

    # for better printing of query, esp during multiprocess
    # can remove if multiprocess printing improved
    if len(search.keys()) == 1:
        query = search.values()[0]

    if "l" in show and search.get("t"):
        from nltk.stem.wordnet import WordNetLemmatizer

        lmtzr = WordNetLemmatizer()

    if type(show) == str:
        show = [show]

    def is_multiquery(corpus, search, query, just_speakers):
        """determine if multiprocessing is needed
        do some retyping if need be as well"""
        im = False
        from collections import OrderedDict

        if hasattr(corpus, "__iter__"):
            im = True
        # so we can do search = 't', query = ['NP', 'VP']:
        if type(query) == list:
            if query != search.values()[0] or len(search.keys()) > 1:
                query = {c.title(): c for c in query}
        if type(query) == dict or type(query) == OrderedDict:
            im = True
        if just_speakers:
            if just_speakers == "each":
                im = True
                just_speakers = ["each"]
            if just_speakers == ["each"]:
                im = True
            if type(just_speakers) == str:
                im = False
                just_speakers = [just_speakers]
            if type(just_speakers) == list:
                if len(just_speakers) > 1:
                    im = True
        if type(search) == dict:
            if all(type(i) == dict for i in search.values()):
                im = True
        return im, corpus, search, query, just_speakers

    def slow_tregex(sents, **dummy_args):
        """do the speaker-specific version of tregex queries"""
        import os
        from corpkit.process import tregex_engine

        # first, put the relevant trees into temp file
        if kwargs.get("outname"):
            to_open = "tmp-%s.txt" % kwargs["outname"]
        else:
            to_open = "tmp.txt"
        to_write = "\n".join([sent._parse_string.strip() for sent in sents if sent.parse_string is not None])
        to_write.encode("utf-8", errors="ignore")
        with open(to_open, "w") as fo:
            fo.write(to_write)
        q = search.values()[0]
        res = tregex_engine(
            query=q, options=["-o", "-%s" % translated_option], corpus=to_open, root=root, preserve_case=True
        )
        if root:
            root.update()
        os.remove(to_open)
        if countmode:
            return len(res)
        else:
            return res

    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter

        statsmode_results = Counter()
        # first, put the relevant trees into temp file
        if kwargs.get("outname"):
            to_open = "tmp-%s.txt" % kwargs["outname"]
        else:
            to_open = "tmp.txt"
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results["Sentences"] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode("utf-8", errors="ignore") + "\n"
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith("pass")])
                statsmode_results["Passives"] += numpass
                statsmode_results["Tokens"] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results["Words"] += len(words)
                statsmode_results["Characters"] += len("".join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from corpkit.other import as_regex

        tregex_qs = {
            "Imperative": r"ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/",
            "Open interrogative": r"ROOT < SBARQ <<- (/\?/ !< __)",
            "Closed interrogative": r"ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))",
            "Unmodalised declarative": r"ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))",
            "Modalised declarative": r"ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))",
            "Open class words": r"/^(NN|JJ|VB|RB)/ < __",
            "Closed class words": r"__ !< __ !> /^(NN|JJ|VB|RB)/",
            "Clauses": r"/^S/ < __",
            "Interrogative": r"ROOT << (/\?/ !< __)",
            "Mental processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)" % as_regex(processes.mental, boundaries="w"),
            "Verbal processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)" % as_regex(processes.verbal, boundaries="w"),
            "Relational processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)"
            % as_regex(processes.relational, boundaries="w"),
        }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query=q, options=["-o", "-C"], corpus=to_open, root=root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + "/" + str(total_files)
                if kwargs.get("outname"):
                    tot_string = "%s: %s" % (kwargs["outname"], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get("note", False):
                kwargs["note"].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results

    def make_conc_lines_from_whole_mid(wholes, middle_column_result, speakr=False):
        if speakr is False:
            speakr = ""
        conc_lines = []
        # remove duplicates from results
        unique_wholes = []
        unique_middle_column_result = []
        duplicates = []
        for index, ((f, whole), mid) in enumerate(zip(wholes, middle_column_result)):
            if "-join-".join([f, whole, mid]) not in duplicates:
                duplicates.append("-join-".join([f, whole, mid]))
                unique_wholes.append([f, whole])
                unique_middle_column_result.append(mid)

        # split into start, middle and end, dealing with multiple occurrences
        for index, ((f, whole), mid) in enumerate(zip(unique_wholes, unique_middle_column_result)):
            reg = re.compile(r"([^a-zA-Z0-9-]|^)(" + re.escape(mid) + r")([^a-zA-Z0-9-]|$)", re.IGNORECASE | re.UNICODE)
            offsets = [(m.start(), m.end()) for m in re.finditer(reg, whole)]
            for offstart, offend in offsets:
                start, middle, end = whole[0:offstart].strip(), whole[offstart:offend].strip(), whole[offend:].strip()
                conc_lines.append([os.path.basename(f), speakr, start, middle, end])
        return conc_lines

    def uniquify(conc_lines):
        from collections import OrderedDict

        unique_lines = []
        checking = []
        for index, (f, speakr, start, middle, end) in enumerate(conc_lines):
            joined = " ".join([speakr, start, "MIDDLEHERE:", middle, ":MIDDLEHERE", end])
            if joined not in checking:
                unique_lines.append(conc_lines[index])
            checking.append(joined)
        return unique_lines

    def lemmatiser(list_of_words, tag):
        """take a list of unicode words and a tag and return a lemmatised list."""
        output = []
        for word in list_of_words:
            if translated_option.startswith("u"):
                if word.lower() in taglemma.keys():
                    word = taglemma[word.lower()]
                else:
                    if word == "x":
                        word = "Other"
            # only use wordnet lemmatiser when appropriate
            else:
                if word in wordlist:
                    word = wordlist[word]
                word = lmtzr.lemmatize(word, tag)
            output.append(word)
        return output

    def gettag(query, lemmatag=False):
        """
        Find tag for WordNet lemmatisation
        """
        import re

        tagdict = {"N": "n", "A": "a", "V": "v", "A": "r", "None": False, "": False, "Off": False}

        if lemmatag is False:
            tag = "n"  # same default as wordnet
            # attempt to find tag from tregex query
            tagfinder = re.compile(r"^[^A-Za-z]*([A-Za-z]*)")
            tagchecker = re.compile(r"^[A-Z]{1,4}$")
            qr = query.replace(r"\w", "").replace(r"\s", "").replace(r"\b", "")
            treebank_tag = re.findall(tagfinder, qr)
            if re.match(tagchecker, treebank_tag[0]):
                tag = tagdict.get(treebank_tag[0], "n")
        elif lemmatag:
            tag = lemmatag
        return tag

    def format_tregex(results):
        """format tregex by show list"""
        if countmode:
            return results
        import re

        done = []
        if "l" in show or "pl" in show:
            lemmata = lemmatiser(results, gettag(search.get("t"), lemmatag))
        else:
            lemmata = [None for i in results]
        for word, lemma in zip(results, lemmata):
            bits = []
            if exclude and exclude.get("w"):
                if len(exclude.keys()) == 1 or excludemode == "any":
                    if re.search(exclude.get("w"), word):
                        continue
                if len(exclude.keys()) == 1 or excludemode == "any":
                    if re.search(exclude.get("l"), lemma):
                        continue
                if len(exclude.keys()) == 1 or excludemode == "any":
                    if re.search(exclude.get("p"), word):
                        continue
                if len(exclude.keys()) == 1 or excludemode == "any":
                    if re.search(exclude.get("pl"), lemma):
                        continue
            if exclude and excludemode == "all":
                num_to_cause_exclude = len(exclude.keys())
                current_num = 0
                if exclude.get("w"):
                    if re.search(exclude.get("w"), word):
                        current_num += 1
                if exclude.get("l"):
                    if re.search(exclude.get("l"), lemma):
                        current_num += 1
                if exclude.get("p"):
                    if re.search(exclude.get("p"), word):
                        current_num += 1
                if exclude.get("pl"):
                    if re.search(exclude.get("pl"), lemma):
                        current_num += 1
                if current_num == num_to_cause_exclude:
                    continue

            for i in show:
                if i == "t":
                    bits.append(word)
                if i == "l":
                    bits.append(lemma)
                elif i == "w":
                    bits.append(word)
                elif i == "p":
                    bits.append(word)
                elif i == "pl":
                    bits.append(lemma)
            joined = "/".join(bits)
            done.append(joined)
        return done

    def tok_by_list(pattern, list_of_toks, concordancing=False, **kwargs):
        """search for regex in plaintext corpora"""
        import re

        if type(pattern) == str:
            pattern = [pattern]
        if not case_sensitive:
            pattern = [p.lower() for p in pattern]
        if not concordancing:
            if case_sensitive:
                matches = [m for m in list_of_toks if m in pattern]
            else:
                matches = [m for m in list_of_toks if m.lower() in pattern]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if token in pattern:
                    match = [" ".join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(token)
                    match.append(" ".join([t for t in unsplitter(list_of_toks[index + 1 :])])[:140])
                    matches.append(match)
        if countmode:
            return len(matches)
        else:
            return matches

    def unsplitter(lst):
        """unsplit contractions and apostophes from tokenised text"""
        if split_contractions:
            return lst
        unsplit = []
        for index, t in enumerate(lst):
            if index == 0 or index == len(lst) - 1:
                unsplit.append(t)
                continue
            if "'" in t and not t.endswith("'"):
                rejoined = "".join([lst[index - 1], t])
                unsplit.append(rejoined)
            else:
                if not "'" in lst[index + 1]:
                    unsplit.append(t)
        return unsplit

    def tok_ngrams(pattern, list_of_toks, concordancing=False, split_contractions=True):
        from collections import Counter
        import re

        ngrams = Counter()
        result = []
        # if it's not a compiled regex
        list_of_toks = [x for x in list_of_toks if re.search(regex_nonword_filter, x)]
        if pattern.lower() == "any":
            pattern = r".*"

        if not split_contractions:
            list_of_toks = unsplitter(list_of_toks)

            # list_of_toks = [x for x in list_of_toks if "'" not in x]
        for index, w in enumerate(list_of_toks):
            try:
                the_gram = [list_of_toks[index + x] for x in range(gramsize)]
                if not any(re.search(pattern, x) for x in the_gram):
                    continue
                ngrams[" ".join(the_gram)] += 1
            except IndexError:
                pass

        # turn counter into list of results
        for k, v in ngrams.items():
            if v > 1:
                for i in range(v):
                    result.append(k)
        if countmode:
            return len(result)
        else:
            return result

    def compiler(pattern):
        """compile regex or fail gracefully"""
        import re

        try:
            if case_sensitive:
                comped = re.compile(pattern)
            else:
                comped = re.compile(pattern, re.IGNORECASE)
            return comped
        except:
            import traceback
            import sys
            from time import localtime, strftime

            exc_type, exc_value, exc_traceback = sys.exc_info()
            lst = traceback.format_exception(exc_type, exc_value, exc_traceback)
            error_message = lst[-1]
            thetime = strftime("%H:%M:%S", localtime())
            print "%s: Query %s" % (thetime, error_message)
            if root:
                return "Bad query"
            else:
                raise ValueError("%s: Query %s" % (thetime, error_message))

    def tok_by_reg(pattern, list_of_toks, concordancing=False, **kwargs):
        """search for regex in plaintext corpora"""
        import re

        comped = compiler(pattern)
        if comped == "Bad query":
            return "Bad query"
        if not concordancing:
            matches = [m for m in list_of_toks if re.search(comped, m)]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if re.search(comped, token):
                    match = [" ".join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(re.search(comped, token).group(0))
                    match.append(" ".join([t for t in unsplitter(list_of_toks[index + 1 :])])[:140])
                    matches.append(match)
        if countmode:
            return len(matches)
        else:
            return matches

    def plaintext_regex_search(pattern, plaintext_data, concordancing=False, **kwargs):
        """search for regex in plaintext corpora

        it searches over lines, so the user needs to be careful.
        """
        import re

        if concordancing:
            pattern = r"(.{,140})\b(" + pattern + r")\b(.{,140})"
        compiled_pattern = compiler(pattern)
        if compiled_pattern == "Bad query":
            return "Bad query"
        matches = re.findall(compiled_pattern, plaintext_data)
        if concordancing:
            matches = [list(m) for m in matches]
        if not concordancing:
            for index, i in enumerate(matches):
                if type(i) == tuple:
                    matches[index] = i[0]
        if countmode:
            return len(matches)
        else:
            return matches

    def correct_spelling(a_string):
        if not spelling:
            return a_string
        from dictionaries.word_transforms import usa_convert

        if spelling.lower() == "uk":
            usa_convert = {v: k for k, v in usa_convert.items()}
        spell_out = []
        bits = a_string.split("/")
        for index, i in enumerate(bits):
            converted = usa_convert.get(i.lower(), i)
            if i.islower() or preserve_case is False:
                converted = converted.lower()
            elif i.isupper() and preserve_case:
                converted = converted.upper()
            elif i.istitle() and preserve_case:
                converted = converted.title()
            bits[index] = converted
        r = "/".join(bits)
        return r

    def plaintext_simple_search(pattern, plaintext_data, concordancing=False, **kwargs):
        """search for tokens in plaintext corpora"""
        import re

        result = []
        if type(pattern) == str:
            pattern = [pattern]
        for p in pattern:
            if concordancing:
                pat = r"(.{0,140})\b(" + re.escape(p) + r")\b(.{0,140})"
            pat = compiler(pat)
            if pat == "Bad query":
                return "Bad query"
            matches = re.findall(pat, plaintext_data)
            if concordancing:
                matches = [list(m) for m in matches]
                for i in matches:
                    result.append(i)
            else:
                for m in range(len(matches)):
                    result.append(p)
        return result

    # do multiprocessing if need be
    im, corpus, search, query, just_speakers = is_multiquery(corpus, search, query, just_speakers)

    locs["search"] = search
    locs["query"] = query
    locs["just_speakers"] = just_speakers
    locs["corpus"] = corpus
    locs["multiprocess"] = multiprocess

    if im:
        from corpkit.multiprocess import pmultiquery

        return pmultiquery(**locs)

    datatype = corpus.datatype
    singlefile = corpus.singlefile

    # store all results in here
    results = {}
    # check if just counting
    countmode = "c" in show
    # where we are at in interrogation
    current_iter = 0

    # multiprocessing progress bar
    denom = kwargs.get("denominator", 1)
    startnum = kwargs.get("startnum", 0)

    ############################################
    # Determine the search function to be used #
    ############################################

    # simple tregex is tregex over whole dirs
    simple_tregex_mode = False
    statsmode = False
    if not just_speakers and "t" in search.keys():
        simple_tregex_mode = True
    else:
        if corpus.datatype == "plaintext":
            if search.get("n"):
                raise NotImplementedError("Use a tokenised corpus for n-gramming.")
                # searcher = plaintext_ngram
                optiontext = "n-grams via plaintext"
            if search.get("w"):
                if kwargs.get("regex", True):
                    searcher = plaintext_regex_search
                else:
                    searcher = plaintext_simple_search
                optiontext = "Searching plaintext"

        elif corpus.datatype == "tokens":
            if search.get("n"):
                searcher = tok_ngrams
                optiontext = "n-grams via tokens"
            elif search.get("w"):
                if kwargs.get("regex", True):
                    searcher = tok_by_reg
                else:
                    searcher = tok_by_list
                if type(search.get("w")) == list:
                    searcher = tok_by_list
                optiontext = "Searching tokens"
        only_parse = ["r", "d", "g", "dl", "gl", "df", "gf", "dp", "gp", "f"]
        if corpus.datatype != "parse" and any(i in only_parse for i in search.keys()):
            raise ValueError(
                'Need parsed corpus to search with "%s" option(s).'
                % ", ".join([i for i in search.keys() if i in only_parse])
            )

        elif corpus.datatype == "parse":
            if search.get("t"):
                searcher = slow_tregex
            elif search.get("s"):
                searcher = get_stats
                statsmode = True
                optiontext = "General statistics"
                global numdone
                numdone = 0
            else:
                from corpkit.depsearch import dep_searcher

                searcher = dep_searcher
                optiontext = "Dependency querying"

    ############################################
    #      Set some Tregex-related values      #
    ############################################

    if search.get("t"):
        query = search.get("t")

        # check the query
        q = tregex_engine(corpus=False, query=search.get("t"), options=["-t"], check_query=True, root=root)
        if query is False:
            if root:
                return "Bad query"
            else:
                return

        optiontext = "Searching parse trees"
        if "p" in show or "pl" in show:
            translated_option = "u"
            if type(search["t"]) == list:
                search["t"] = r"__ < (/%s/ !< __)" % as_regex(
                    search["t"], boundaries="line", case_sensitive=case_sensitive
                )
            if search["t"] == "any":
                search["t"] = r"__ < (/.?[A-Za-z0-9].?/ !< __)"
        elif "t" in show:
            translated_option = "o"
            if type(search["t"]) == list:
                search["t"] = r"__ < (/%s/ !< __)" % as_regex(
                    search["t"], boundaries="line", case_sensitive=case_sensitive
                )
            if search["t"] == "any":
                search["t"] = r"__ < (/.?[A-Za-z0-9].?/ !< __)"
        elif "w" in show:
            translated_option = "t"
            if type(search["t"]) == list:
                search["t"] = r"/%s/ !< __" % as_regex(search["t"], boundaries="line", case_sensitive=case_sensitive)
            if search["t"] == "any":
                search["t"] = r"/.?[A-Za-z0-9].?/ !< __"
        elif "c" in show:
            count_results = {}
            only_count = True
            translated_option = "C"
            if type(search["t"]) == list:
                search["t"] = r"/%s/ !< __" % as_regex(search["t"], boundaries="line", case_sensitive=case_sensitive)
            if search["t"] == "any":
                search["t"] = r"/.?[A-Za-z0-9].?/ !< __"
        elif "l" in show:
            translated_option = "t"
            if type(search["t"]) == list:
                search["t"] = r"/%s/ !< __" % as_regex(search["t"], boundaries="line", case_sensitive=case_sensitive)
            if search["t"] == "any":
                search["t"] = r"/.?[A-Za-z0-9].?/ !< __"

        query = search["t"]

    ############################################
    # Make iterable for corpus/subcorpus/file  #
    ############################################

    if corpus.singlefile:
        to_iterate_over = {(corpus.name, corpus.path): [corpus]}
    elif not corpus.subcorpora:
        to_iterate_over = {(corpus.name, corpus.path): corpus.files}
    else:
        to_iterate_over = {}
        for k, v in sorted(corpus.structure.items()):
            to_iterate_over[(k.name, k.path)] = v
    if files_as_subcorpora:
        to_iterate_over = {}
        for f in corpus.files:
            to_iterate_over[(f.name, f.path)] = [f]

    ############################################
    #           Print welcome message          #
    ############################################

    if conc:
        message = "Concordancing"
    else:
        message = "Interrogating"
    if kwargs.get("printstatus", True):
        thetime = strftime("%H:%M:%S", localtime())

        sformat = "\n                 ".join(["%s: %s" % (k.rjust(3), v) for k, v in search.items()])
        if search == {"s": r".*"}:
            sformat = "features"
        welcome = "\n%s: %s %s ...\n          %s\n          Query: %s\n" % (
            thetime,
            message,
            corpus.name,
            optiontext,
            sformat,
        )
        print welcome

    ############################################
    #           Make progress bar              #
    ############################################

    if simple_tregex_mode:
        total_files = len(to_iterate_over.keys())
    else:
        if search.get("s"):
            total_files = sum([len(x) for x in to_iterate_over.values()]) * 12
        else:
            total_files = sum([len(x) for x in to_iterate_over.values()])

    par_args = {"printstatus": kwargs.get("printstatus", True), "root": root, "note": note, "length": total_files}

    term = None
    if kwargs.get("paralleling", None) is not None:
        from blessings import Terminal

        term = Terminal()
        par_args["terminal"] = term
        par_args["linenum"] = kwargs.get("paralleling")

    outn = kwargs.get("outname", "")
    if outn:
        outn = outn + ": "
    tstr = "%s%d/%d" % (outn, current_iter, total_files)
    p = animator(None, None, init=True, tot_string=tstr, **par_args)
    tstr = "%s%d/%d" % (outn, current_iter + 1, total_files)
    animator(p, current_iter, tstr, **par_args)

    ############################################
    # Iterate over data, doing interrogations  #
    ############################################

    for (subcorpus_name, subcorpus_path), files in sorted(to_iterate_over.items()):

        if countmode or conc:
            results[subcorpus_name] = []
        else:
            results[subcorpus_name] = Counter()

        # tregex over subcorpora, not files
        if simple_tregex_mode:

            op = ["-o", "-" + translated_option]
            result = tregex_engine(
                query=search["t"], options=op, corpus=subcorpus_path, root=root, preserve_case=preserve_case
            )

            if countmode:
                results[subcorpus_name].append(result)
                continue

            result = Counter(format_tregex(result))

            if conc:
                op.append("-w")
                whole_result = tregex_engine(
                    query=search["t"], options=op, corpus=subcorpus_path, root=root, preserve_case=preserve_case
                )

                if not only_format_match:
                    whole_result = format_tregex(whole_result)

                result = make_conc_lines_from_whole_mid(whole_result, result, speakr=False)

                if spelling:
                    for index, line in enumerate(result):
                        result[index] = [correct_spelling(b) for b in line]

            results[subcorpus_name] += result

            current_iter += 1
            if kwargs.get("paralleling", None) is not None:
                tstr = "%s%d/%d" % (outn, current_iter + 2, total_files)
            else:
                tstr = "%s%d/%d" % (outn, current_iter + 1, total_files)
            animator(p, current_iter, tstr, **par_args)

        # dependencies, plaintext, tokens or slow_tregex
        else:
            for f in files:

                if corpus.datatype == "parse":
                    with open(f.path, "r") as data:
                        data = data.read()
                        from corenlp_xml.document import Document

                        try:
                            corenlp_xml = Document(data)
                        except:
                            print "Could not read file: %s" % f.path
                            continue
                        if just_speakers:
                            sents = [s for s in corenlp_xml.sentences if s.speakername in just_speakers]
                            if not sents:
                                continue
                        else:
                            sents = corenlp_xml.sentences

                        res = searcher(
                            sents,
                            search=search,
                            show=show,
                            dep_type=dep_type,
                            exclude=exclude,
                            excludemode=excludemode,
                            searchmode=searchmode,
                            lemmatise=False,
                            case_sensitive=case_sensitive,
                            concordancing=conc,
                            only_format_match=only_format_match,
                        )

                        if res == "Bad query":
                            return "Bad query"

                        if searcher == slow_tregex and not countmode:
                            res = format_tregex(res)

                elif corpus.datatype == "tokens":
                    import pickle

                    with open(f.path, "rb") as fo:
                        data = pickle.load(fo)
                    res = searcher(search.values()[0], data, split_contractions=split_contractions, concordancing=conc)
                    if conc:
                        for index, line in enumerate(res):
                            line.insert(0, "")

                elif corpus.datatype == "plaintext":
                    with open(f.path, "rb") as data:
                        data = data.read()
                        data = unicode(data, errors="ignore")
                        res = searcher(search.values()[0], data, concordancing=conc)
                        if conc:
                            for index, line in enumerate(res):
                                line.insert(0, "")

                if countmode:
                    results[subcorpus_name] += res
                    continue

                # add filename and do lowercasing for conc
                if conc:
                    for index, line in enumerate(res):
                        line.insert(0, f.name)
                        if not preserve_case:
                            line = [b.lower() for b in line]
                        if spelling:
                            line = [correct_spelling(b) for b in line]
                        results[subcorpus_name] += [line]

                # do lowercasing and spelling
                else:
                    if not preserve_case:
                        res = [r.lower() for r in res]
                    if spelling:
                        res = [correct_spelling(r) for r in res]
                    results[subcorpus_name] += Counter(res)

                if not statsmode:
                    current_iter += 1
                    if kwargs.get("paralleling", None) is not None:
                        tstr = "%s%d/%d" % (outn, current_iter + 2, total_files)
                    else:
                        tstr = "%s%d/%d" % (outn, current_iter + 1, total_files)

    # delete temp file if there
    import os

    if os.path.isfile("tmp.txt"):
        os.remove("tmp.txt")

    ############################################
    #     Get concordances into DataFrame      #
    ############################################

    if conc:
        all_conc_lines = []
        for sc_name, resu in sorted(results.items()):

            if only_unique:
                unique_results = uniquify(resu)
            else:
                unique_results = resu
            # make into series
            pindex = "c f s l m r".encode("utf-8").split()
            for fname, spkr, start, word, end in unique_results:
                spkr = unicode(spkr, errors="ignore")
                fname = os.path.basename(fname)

                # the use of ascii here makes sure the string formats ok, but will also screw over
                # anyone doing non-english work. so, change to utf-8, then fix errors as they come
                # in the corpkit-gui "add_conc_lines_to_window" function
                all_conc_lines.append(
                    Series(
                        [
                            sc_name.encode("ascii", errors="ignore"),
                            fname.encode("ascii", errors="ignore"),
                            spkr.encode("ascii", errors="ignore"),
                            start.encode("ascii", errors="ignore"),
                            word.encode("ascii", errors="ignore"),
                            end.encode("ascii", errors="ignore"),
                        ],
                        index=pindex,
                    )
                )

        # randomise results...
        if random:
            from random import shuffle

            shuffle(all_conc_lines)

        df = pd.concat(all_conc_lines, axis=1).T

        # not doing anything yet --- this is for multimodal concordancing
        add_links = False
        if not add_links:
            df.columns = ["c", "f", "s", "l", "m", "r"]
        else:
            df.columns = ["c", "f", "s", "l", "m", "r", "link"]

        if all(x == "" for x in list(df["s"].values)):
            df.drop("s", axis=1, inplace=True)

        if kwargs.get("note"):
            kwargs["note"].progvar.set(100)

        if kwargs.get("printstatus", True):
            thetime = strftime("%H:%M:%S", localtime())
            finalstring = "\n\n%s: Concordancing finished! %d matches.\n" % (thetime, len(df.index))
            print finalstring

        from corpkit.interrogation import Concordance

        output = Concordance(df)
        output.query = locs
        if quicksave:
            interro.save()
        return output

    ############################################
    #     Get interrogation into DataFrame     #
    ############################################

    else:
        if countmode:
            df = Series({k: sum(v) for k, v in sorted(results.items())})
            tot = df.sum()
        else:
            the_big_dict = {}
            unique_results = set([item for sublist in results.values() for item in sublist])
            for word in unique_results:
                the_big_dict[word] = [subcorp_result[word] for subcorp_result in sorted(results.values())]
            # turn master dict into dataframe, sorted
            df = DataFrame(the_big_dict, index=sorted(results.keys()))

            numentries = len(df.columns)
            tot = df.sum(axis=1)
            total_total = df.sum().sum()

        ############################################
        # Format, output as Interrogation object   #
        ############################################

        if not countmode:
            if not corpus.subcorpora or singlefile:
                if not files_as_subcorpora:
                    if not kwargs.get("df1_always_df"):
                        df = Series(df.ix[0])
                        df.sort(ascending=False)
                        tot = df.sum()
                        numentries = len(df.index)
                        total_total = tot

        # sort by total
        if type(df) == pd.core.frame.DataFrame:
            if not df.empty:
                df.ix["Total-tmp"] = df.sum()
                the_tot = df.ix["Total-tmp"]
                df = df[the_tot.argsort()[::-1]]
                df = df.drop("Total-tmp", axis=0)

        # format final string
        if kwargs.get("printstatus", True):
            thetime = strftime("%H:%M:%S", localtime())
            finalstring = "\n\n%s: Interrogation finished!" % thetime
            if countmode:
                finalstring += " %d matches." % tot
            else:
                finalstring += " %d unique results, %d total occurrences." % (numentries, total_total)
            print finalstring

        interro = Interrogation(results=df, totals=tot, query=locs)

        if quicksave:
            interro.save()

        return interro
Пример #8
0
    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter

        statsmode_results = Counter()
        # first, put the relevant trees into temp file
        if kwargs.get("outname"):
            to_open = "tmp-%s.txt" % kwargs["outname"]
        else:
            to_open = "tmp.txt"
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results["Sentences"] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode("utf-8", errors="ignore") + "\n"
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith("pass")])
                statsmode_results["Passives"] += numpass
                statsmode_results["Tokens"] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results["Words"] += len(words)
                statsmode_results["Characters"] += len("".join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from corpkit.other import as_regex

        tregex_qs = {
            "Imperative": r"ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/",
            "Open interrogative": r"ROOT < SBARQ <<- (/\?/ !< __)",
            "Closed interrogative": r"ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))",
            "Unmodalised declarative": r"ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))",
            "Modalised declarative": r"ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))",
            "Open class words": r"/^(NN|JJ|VB|RB)/ < __",
            "Closed class words": r"__ !< __ !> /^(NN|JJ|VB|RB)/",
            "Clauses": r"/^S/ < __",
            "Interrogative": r"ROOT << (/\?/ !< __)",
            "Mental processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)" % as_regex(processes.mental, boundaries="w"),
            "Verbal processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)" % as_regex(processes.verbal, boundaries="w"),
            "Relational processes": r"VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)"
            % as_regex(processes.relational, boundaries="w"),
        }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query=q, options=["-o", "-C"], corpus=to_open, root=root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + "/" + str(total_files)
                if kwargs.get("outname"):
                    tot_string = "%s: %s" % (kwargs["outname"], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get("note", False):
                kwargs["note"].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results