def Uop(bvop, bop, in_, out): # INVAR: (<op> in) = out) vars_ = [in_, out] comment = "" #(bvop.__name__ + " (in, out) = (%s, %s)")%(tuple([x.symbol_name() for x in vars_])) Logger.log(comment, 3) in_B = get_type(in_).is_bool_type() outB = get_type(out).is_bool_type() bools = (1 if in_B else 0) + (1 if outB else 0) if bop == None: if in_B: in_ = B2BV(in_) if outB: out = B2BV(out) invar = EqualsOrIff(bvop(in_), out) else: if bools == 2: invar = EqualsOrIff(bop(in_), out) elif bools == 0: invar = EqualsOrIff(bvop(in_), out) else: if not in_B: invar = EqualsOrIff(bop(BV2B(in_)), out) if not outB: invar = EqualsOrIff(bop(in_), BV2B(out)) ts = TS(comment) ts.vars, ts.invar = get_free_variables(invar), invar return ts
def Zext(in_, out): # INVAR: (<op> in) = out) vars_ = [in_, out] comment = ("ZExt (in, out) = (%s, %s)") % (tuple( [x.symbol_name() for x in vars_])) Logger.log(comment, 3) if (in_.symbol_type() == BOOL) and (out.symbol_type() == BOOL): invar = EqualsOrIff(in_, out) if (in_.symbol_type() != BOOL) and (out.symbol_type() == BOOL): invar = EqualsOrIff(BV2B(in_), out) if (in_.symbol_type() == BOOL) and (out.symbol_type() != BOOL): length = (out.symbol_type().width) - 1 if length == 0: invar = EqualsOrIff(in_, BV2B(out)) else: invar = EqualsOrIff(BVZExt(B2BV(in_), length), out) if (in_.symbol_type() != BOOL) and (out.symbol_type() != BOOL): length = (out.symbol_type().width) - (in_.symbol_type().width) if length == 0: invar = EqualsOrIff(in_, out) else: invar = EqualsOrIff(BVZExt(in_, length), out) ts = TS(comment) ts.vars, ts.invar = set(vars_), invar return ts
def Negedge(self, x): if get_type(x).is_bool_type(): if (self.encoder_config is not None) and (self.encoder_config.abstract_clock): return Not(x) return And(x, Not(TS.to_next(x))) if (self.encoder_config is not None) and (self.encoder_config.abstract_clock): return EqualsOrIff(x, BV(0,1)) return And(BV2B(x), EqualsOrIff(TS.to_next(x), BV(0,1)))
def Posedge(self, x): if get_type(x).is_bool_type(): if (self.encoder_config is not None) and (self.encoder_config.abstract_clock): return x return And(Not(x), TS.to_next(x)) if (self.encoder_config is not None) and (self.encoder_config.abstract_clock): return EqualsOrIff(x, BV(1,1)) return And(EqualsOrIff(x, BV(0,1)), BV2B(TS.to_next(x)))
def Bop(bvop, bop, in0, in1, out): # INVAR: (in0 <op> in1) = out vars_ = [in0, in1, out] comment = (bvop.__name__ + " (in0, in1, out) = (%s, %s, %s)") % (tuple( [x.symbol_name() for x in vars_])) Logger.log(comment, 3) in0B = in0.symbol_type() == BOOL in1B = in1.symbol_type() == BOOL outB = out.symbol_type() == BOOL bools = (1 if in0B else 0) + (1 if in1B else 0) + (1 if outB else 0) if bop == None: if in0B: in0 = Ite(in0, BV(1, 1), BV(0, 1)) if in1B: in1 = Ite(in1, BV(1, 1), BV(0, 1)) if outB: out = Ite(out, BV(1, 1), BV(0, 1)) invar = EqualsOrIff(bvop(in0, in1), out) else: if bools == 3: invar = EqualsOrIff(bop(in0, in1), out) elif bools == 0: invar = EqualsOrIff(bvop(in0, in1), out) elif bools == 1: if in0B: invar = EqualsOrIff(bvop(B2BV(in0), in1), out) if in1B: invar = EqualsOrIff(bvop(in0, B2BV(in1)), out) if outB: invar = EqualsOrIff(BV2B(bvop(in0, in1)), out) else: if not in0B: invar = EqualsOrIff(bop(BV2B(in0), in1), out) if not in1B: invar = EqualsOrIff(bop(in0, BV2B(in1)), out) if not outB: invar = EqualsOrIff(B2BV(bop(in0, in1)), out) ts = TS(comment) ts.vars, ts.invar = set(vars_), invar return ts
def getnode(nid): node_covered.add(nid) if int(nid) < 0: return Ite(BV2B(nodemap[str(-int(nid))]), BV(0,1), BV(1,1)) return nodemap[nid]
def parse_string(self, strinput): hts = HTS() ts = TS() nodemap = {} node_covered = set([]) # list of tuples of var and cond_assign_list # cond_assign_list is tuples of (condition, value) # where everything is a pysmt FNode # for btor, the condition is always True ftrans = [] initlist = [] invarlist = [] invar_props = [] ltl_props = [] prop_count = 0 # clean string input, remove special characters from names for sc, rep in special_char_replacements.items(): strinput = strinput.replace(sc, rep) def getnode(nid): node_covered.add(nid) if int(nid) < 0: return Ite(BV2B(nodemap[str(-int(nid))]), BV(0,1), BV(1,1)) return nodemap[nid] def binary_op(bvop, bop, left, right): if (get_type(left) == BOOL) and (get_type(right) == BOOL): return bop(left, right) return bvop(B2BV(left), B2BV(right)) def unary_op(bvop, bop, left): if (get_type(left) == BOOL): return bop(left) return bvop(left) for line in strinput.split(NL): linetok = line.split() if len(linetok) == 0: continue if linetok[0] == COM: continue (nid, ntype, *nids) = linetok if ntype == SORT: (stype, *attr) = nids if stype == BITVEC: nodemap[nid] = BVType(int(attr[0])) node_covered.add(nid) if stype == ARRAY: nodemap[nid] = ArrayType(getnode(attr[0]), getnode(attr[1])) node_covered.add(nid) if ntype == WRITE: nodemap[nid] = Store(*[getnode(n) for n in nids[1:4]]) if ntype == READ: nodemap[nid] = Select(getnode(nids[1]), getnode(nids[2])) if ntype == ZERO: nodemap[nid] = BV(0, getnode(nids[0]).width) if ntype == ONE: nodemap[nid] = BV(1, getnode(nids[0]).width) if ntype == ONES: width = getnode(nids[0]).width nodemap[nid] = BV((2**width)-1, width) if ntype == REDOR: width = get_type(getnode(nids[1])).width zeros = BV(0, width) nodemap[nid] = BVNot(BVComp(getnode(nids[1]), zeros)) if ntype == REDXOR: width = get_type(getnode(nids[1])).width nodemap[nid] = BV(0, width) zeros = BV(0, width) for yx_i in range(width): tmp = BV(1 << yx_i, width) tmp_2 = BVAnd(tmp, B2BV(getnode(nids[1]))) tmp_3 = BVZExt(B2BV(BVComp(tmp_2, zeros)), int(width - 1)) nodemap[nid] = BVAdd(tmp_3, nodemap[nid]) nodemap[nid] = BVComp(BVAnd(BV(1, width), nodemap[nid]), BV(1, width)) if ntype == REDAND: width = get_type(getnode(nids[1])).width ones = BV((2**width)-1, width) nodemap[nid] = BVComp(getnode(nids[1]), ones) if ntype == CONSTD: width = getnode(nids[0]).width nodemap[nid] = BV(int(nids[1]), width) if ntype == CONST: width = getnode(nids[0]).width nodemap[nid] = BV(bin_to_dec(nids[1]), width) if ntype == STATE: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN%nid), getnode(nids[0])) ts.add_state_var(nodemap[nid]) if ntype == INPUT: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN%nid), getnode(nids[0])) ts.add_input_var(nodemap[nid]) if ntype == OUTPUT: # unfortunately we need to create an extra symbol just to have the output name # we could be smarter about this, but then this parser can't be greedy original_symbol = getnode(nids[0]) output_symbol = Symbol(nids[1], original_symbol.get_type()) nodemap[nid] = EqualsOrIff(output_symbol, original_symbol) invarlist.append(nodemap[nid]) node_covered.add(nid) ts.add_output_var(output_symbol) if ntype == AND: nodemap[nid] = binary_op(BVAnd, And, getnode(nids[1]), getnode(nids[2])) if ntype == CONCAT: nodemap[nid] = BVConcat(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == XOR: nodemap[nid] = binary_op(BVXor, Xor, getnode(nids[1]), getnode(nids[2])) if ntype == XNOR: nodemap[nid] = BVNot(binary_op(BVXor, Xor, getnode(nids[1]), getnode(nids[2]))) if ntype == NAND: bvop = lambda x,y: BVNot(BVAnd(x, y)) bop = lambda x,y: Not(And(x, y)) nodemap[nid] = binary_op(bvop, bop, getnode(nids[1]), getnode(nids[2])) if ntype == IMPLIES: nodemap[nid] = BVOr(BVNot(getnode(nids[1])), getnode(nids[2])) if ntype == NOT: nodemap[nid] = unary_op(BVNot, Not, getnode(nids[1])) if ntype == NEG: nodemap[nid] = unary_op(BVNeg, Not, getnode(nids[1])) if ntype == UEXT: nodemap[nid] = BVZExt(B2BV(getnode(nids[1])), int(nids[2])) if ntype == SEXT: nodemap[nid] = BVSExt(B2BV(getnode(nids[1])), int(nids[2])) if ntype == OR: nodemap[nid] = binary_op(BVOr, Or, getnode(nids[1]), getnode(nids[2])) if ntype == ADD: nodemap[nid] = BVAdd(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SUB: nodemap[nid] = BVSub(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGT: nodemap[nid] = BVUGT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGTE: nodemap[nid] = BVUGE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULT: nodemap[nid] = BVULT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULTE: nodemap[nid] = BVULE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SGT: nodemap[nid] = BVSGT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SGTE: nodemap[nid] = BVSGE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLT: nodemap[nid] = BVSLT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLTE: nodemap[nid] = BVSLE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == EQ: nodemap[nid] = BVComp(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == NEQ: nodemap[nid] = BVNot(BVComp(getnode(nids[1]), getnode(nids[2]))) if ntype == MUL: nodemap[nid] = BVMul(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLICE: nodemap[nid] = BVExtract(B2BV(getnode(nids[1])), int(nids[3]), int(nids[2])) if ntype == SLL: nodemap[nid] = BVLShl(getnode(nids[1]), getnode(nids[2])) if ntype == SRA: nodemap[nid] = BVAShr(getnode(nids[1]), getnode(nids[2])) if ntype == SRL: nodemap[nid] = BVLShr(getnode(nids[1]), getnode(nids[2])) if ntype == ITE: if (get_type(getnode(nids[2])) == BOOL) or (get_type(getnode(nids[3])) == BOOL): nodemap[nid] = Ite(BV2B(getnode(nids[1])), B2BV(getnode(nids[2])), B2BV(getnode(nids[3]))) else: nodemap[nid] = Ite(BV2B(getnode(nids[1])), getnode(nids[2]), getnode(nids[3])) if ntype == NEXT: if (get_type(getnode(nids[1])) == BOOL) or (get_type(getnode(nids[2])) == BOOL): lval = TS.get_prime(getnode(nids[1])) rval = BV2B(getnode(nids[2])) else: lval = TS.get_prime(getnode(nids[1])) rval = getnode(nids[2]) nodemap[nid] = EqualsOrIff(lval, rval) ftrans.append( (lval, [(TRUE(), rval)]) ) if ntype == INIT: if (get_type(getnode(nids[1])) == BOOL) or (get_type(getnode(nids[2])) == BOOL): nodemap[nid] = EqualsOrIff(BV2B(getnode(nids[1])), BV2B(getnode(nids[2]))) else: nodemap[nid] = EqualsOrIff(getnode(nids[1]), getnode(nids[2])) initlist.append(getnode(nid)) if ntype == CONSTRAINT: nodemap[nid] = BV2B(getnode(nids[0])) invarlist.append(getnode(nid)) if ntype == BAD: nodemap[nid] = getnode(nids[0]) if ASSERTINFO in line: filename_lineno = os.path.basename(nids[3]) assert_name = 'embedded_assertion_%s'%filename_lineno description = "Embedded assertion at line {1} in {0}".format(*filename_lineno.split(COLON_REP)) else: assert_name = 'embedded_assertion_%i'%prop_count description = 'Embedded assertion number %i'%prop_count prop_count += 1 # Following problem format (name, description, strformula) invar_props.append((assert_name, description, Not(BV2B(getnode(nid))))) if nid not in nodemap: Logger.error("Unknown node type \"%s\""%ntype) # get wirename if it exists if ntype not in {STATE, INPUT, OUTPUT, BAD}: # check for wirename, if it's an integer, then it's a node ref try: a = int(nids[-1]) except: try: wire = Symbol(str(nids[-1]), getnode(nids[0])) invarlist.append(EqualsOrIff(wire, B2BV(nodemap[nid]))) ts.add_var(wire) except: pass if Logger.level(1): name = lambda x: str(nodemap[x]) if nodemap[x].is_symbol() else x uncovered = [name(x) for x in nodemap if x not in node_covered] uncovered.sort() if len(uncovered) > 0: Logger.warning("Unlinked nodes \"%s\""%",".join(uncovered)) if not self.symbolic_init: init = simplify(And(initlist)) else: init = TRUE() invar = simplify(And(invarlist)) # instead of trans, we're using the ftrans format -- see below ts.set_behavior(init, TRUE(), invar) # add ftrans for var, cond_assign_list in ftrans: ts.add_func_trans(var, cond_assign_list) hts.add_ts(ts) return (hts, invar_props, ltl_props)
def parse_string(self, strinput): hts = HTS() ts = TS() nodemap = {} node_covered = set([]) # list of tuples of var and cond_assign_list # cond_assign_list is tuples of (condition, value) # where everything is a pysmt FNode # for btor, the condition is always True ftrans = [] initlist = [] invarlist = [] invar_props = [] ltl_props = [] prop_count = 0 # clean string input, remove special characters from names for sc, rep in special_char_replacements.items(): strinput = strinput.replace(sc, rep) def getnode(nid): node_covered.add(nid) if int(nid) < 0: return Ite(BV2B(nodemap[str(-int(nid))]), BV(0, 1), BV(1, 1)) return nodemap[nid] def binary_op(bvop, bop, left, right): if (get_type(left) == BOOL) and (get_type(right) == BOOL): return bop(left, right) return bvop(B2BV(left), B2BV(right)) def unary_op(bvop, bop, left): if (get_type(left) == BOOL): return bop(left) return bvop(left) for line in strinput.split(NL): linetok = line.split() if len(linetok) == 0: continue if linetok[0] == COM: continue (nid, ntype, *nids) = linetok if ntype == SORT: (stype, *attr) = nids if stype == BITVEC: nodemap[nid] = BVType(int(attr[0])) node_covered.add(nid) if stype == ARRAY: nodemap[nid] = ArrayType(getnode(attr[0]), getnode(attr[1])) node_covered.add(nid) if ntype == WRITE: nodemap[nid] = Store(*[getnode(n) for n in nids[1:4]]) if ntype == READ: nodemap[nid] = Select(getnode(nids[1]), getnode(nids[2])) if ntype == ZERO: nodemap[nid] = BV(0, getnode(nids[0]).width) if ntype == ONE: nodemap[nid] = BV(1, getnode(nids[0]).width) if ntype == ONES: width = getnode(nids[0]).width nodemap[nid] = BV((2**width) - 1, width) if ntype == REDOR: width = get_type(getnode(nids[1])).width zeros = BV(0, width) nodemap[nid] = BVNot(BVComp(getnode(nids[1]), zeros)) if ntype == REDAND: width = get_type(getnode(nids[1])).width ones = BV((2**width) - 1, width) nodemap[nid] = BVComp(getnode(nids[1]), ones) if ntype == CONSTD: width = getnode(nids[0]).width nodemap[nid] = BV(int(nids[1]), width) if ntype == CONST: width = getnode(nids[0]).width try: nodemap[nid] = BV(bin_to_dec(nids[1]), width) except ValueError: if not all([i == 'x' or i == 'z' for i in nids[1]]): raise RuntimeError( "If not a valid number, only support " "all don't cares or high-impedance but got {}". format(nids[1])) # create a fresh variable for this non-deterministic constant nodemap[nid] = Symbol('const_' + nids[1], BVType(width)) ts.add_state_var(nodemap[nid]) Logger.warning( "Creating a fresh symbol for unsupported X/Z constant %s" % nids[1]) if ntype == STATE: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN % nid), getnode(nids[0])) ts.add_state_var(nodemap[nid]) if ntype == INPUT: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN % nid), getnode(nids[0])) ts.add_input_var(nodemap[nid]) if ntype == OUTPUT: # unfortunately we need to create an extra symbol just to have the output name # we could be smarter about this, but then this parser can't be greedy original_symbol = B2BV(getnode(nids[0])) output_symbol = Symbol(nids[1], original_symbol.get_type()) nodemap[nid] = EqualsOrIff(output_symbol, original_symbol) invarlist.append(nodemap[nid]) node_covered.add(nid) ts.add_output_var(output_symbol) if ntype == AND: nodemap[nid] = binary_op(BVAnd, And, getnode(nids[1]), getnode(nids[2])) if ntype == CONCAT: nodemap[nid] = BVConcat(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == XOR: nodemap[nid] = binary_op(BVXor, Xor, getnode(nids[1]), getnode(nids[2])) if ntype == XNOR: nodemap[nid] = BVNot( binary_op(BVXor, Xor, getnode(nids[1]), getnode(nids[2]))) if ntype == NAND: bvop = lambda x, y: BVNot(BVAnd(x, y)) bop = lambda x, y: Not(And(x, y)) nodemap[nid] = binary_op(bvop, bop, getnode(nids[1]), getnode(nids[2])) if ntype == IMPLIES: nodemap[nid] = BVOr(BVNot(getnode(nids[1])), getnode(nids[2])) if ntype == NOT: nodemap[nid] = unary_op(BVNot, Not, getnode(nids[1])) if ntype == NEG: nodemap[nid] = unary_op(BVNeg, Not, getnode(nids[1])) if ntype == UEXT: nodemap[nid] = BVZExt(B2BV(getnode(nids[1])), int(nids[2])) if ntype == SEXT: nodemap[nid] = BVSExt(B2BV(getnode(nids[1])), int(nids[2])) if ntype == OR: nodemap[nid] = binary_op(BVOr, Or, getnode(nids[1]), getnode(nids[2])) if ntype == ADD: nodemap[nid] = BVAdd(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SUB: nodemap[nid] = BVSub(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGT: nodemap[nid] = BVUGT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGTE: nodemap[nid] = BVUGE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULT: nodemap[nid] = BVULT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULTE: nodemap[nid] = BVULE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SGT: nodemap[nid] = BVSGT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SGTE: nodemap[nid] = BVSGE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLT: nodemap[nid] = BVSLT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLTE: nodemap[nid] = BVSLE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == EQ: nodemap[nid] = BVComp(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == NEQ: nodemap[nid] = BVNot(BVComp(getnode(nids[1]), getnode(nids[2]))) if ntype == MUL: nodemap[nid] = BVMul(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLICE: nodemap[nid] = BVExtract(B2BV(getnode(nids[1])), int(nids[3]), int(nids[2])) if ntype == SLL: nodemap[nid] = BVLShl(getnode(nids[1]), getnode(nids[2])) if ntype == SRA: nodemap[nid] = BVAShr(getnode(nids[1]), getnode(nids[2])) if ntype == SRL: nodemap[nid] = BVLShr(getnode(nids[1]), getnode(nids[2])) if ntype == ITE: if (get_type(getnode(nids[2])) == BOOL) or (get_type( getnode(nids[3])) == BOOL): nodemap[nid] = Ite(BV2B(getnode(nids[1])), B2BV(getnode(nids[2])), B2BV(getnode(nids[3]))) else: nodemap[nid] = Ite(BV2B(getnode(nids[1])), getnode(nids[2]), getnode(nids[3])) if ntype == NEXT: if (get_type(getnode(nids[1])) == BOOL) or (get_type( getnode(nids[2])) == BOOL): lval = TS.get_prime(getnode(nids[1])) rval = B2BV(getnode(nids[2])) else: lval = TS.get_prime(getnode(nids[1])) rval = getnode(nids[2]) nodemap[nid] = EqualsOrIff(lval, rval) ftrans.append((lval, [(TRUE(), rval)])) if ntype == INIT: if (get_type(getnode(nids[1])) == BOOL) or (get_type( getnode(nids[2])) == BOOL): nodemap[nid] = EqualsOrIff(BV2B(getnode(nids[1])), BV2B(getnode(nids[2]))) elif get_type(getnode(nids[1])).is_array_type(): _type = get_type(getnode(nids[1])) nodemap[nid] = EqualsOrIff( getnode(nids[1]), Array(_type.index_type, default=getnode(nids[2]))) else: nodemap[nid] = EqualsOrIff(getnode(nids[1]), getnode(nids[2])) initlist.append(getnode(nid)) if ntype == CONSTRAINT: nodemap[nid] = BV2B(getnode(nids[0])) invarlist.append(getnode(nid)) if ntype == BAD: nodemap[nid] = getnode(nids[0]) if len(nids) > 1: assert_name = nids[1] description = "Embedded assertion: {}".format(assert_name) else: assert_name = 'embedded_assertion_%i' % prop_count description = 'Embedded assertion number %i' % prop_count prop_count += 1 # Following problem format (name, description, strformula) invar_props.append( (assert_name, description, Not(BV2B(getnode(nid))))) if nid not in nodemap: Logger.error("Unknown node type \"%s\"" % ntype) # get wirename if it exists if ntype not in {STATE, INPUT, OUTPUT, BAD}: # disregard comments at the end of the line try: symbol_idx = nids.index(';') symbol_idx -= 1 # the symbol should be before the comment except: # the symbol is just the end symbol_idx = -1 # check for wirename, if it's an integer, then it's a node ref try: a = int(nids[symbol_idx]) except: try: name = str(nids[symbol_idx]) # use the exact name, unless it has already been used wire = Symbol(name, getnode(nids[0])) if wire in ts.vars: wire = FreshSymbol(getnode(nids[0]), template=name + "%d") invarlist.append(EqualsOrIff(wire, B2BV(nodemap[nid]))) ts.add_var(wire) except: pass if Logger.level(1): name = lambda x: str(nodemap[x]) if nodemap[x].is_symbol() else x uncovered = [name(x) for x in nodemap if x not in node_covered] uncovered.sort() if len(uncovered) > 0: Logger.warning("Unlinked nodes \"%s\"" % ",".join(uncovered)) if not self.symbolic_init: init = simplify(And(initlist)) else: init = TRUE() invar = simplify(And(invarlist)) # instead of trans, we're using the ftrans format -- see below ts.set_behavior(init, TRUE(), invar) # add ftrans for var, cond_assign_list in ftrans: ts.add_func_trans(var, cond_assign_list) hts.add_ts(ts) return (hts, invar_props, ltl_props)
def compile_sts(self, name, params): sparser = StringParser() in_port, max_val, c_push, c_pop = list(params) max_val = int(max_val) if type(c_push) == str: c_push = sparser.parse_formula(c_push) if type(c_pop) == str: c_pop = sparser.parse_formula(c_pop) tracking = Symbol("%s.tracking" % name, BOOL) end = Symbol("%s.end" % name, BOOL) done = Symbol("%s.done" % name, BOOL) packet = Symbol("%s.packet" % name, BVType(in_port.symbol_type().width)) max_width = math.ceil(math.log(max_val) / math.log(2)) max_bvval = BV(max_val, max_width) zero = BV(0, max_width) one = BV(1, max_width) count = Symbol("%s.count" % name, BVType(max_width)) size = Symbol("%s.size" % name, BVType(max_width)) pos_c_push = BV2B(c_push) neg_c_push = Not(BV2B(c_push)) pos_c_pop = BV2B(c_pop) neg_c_pop = Not(BV2B(c_pop)) init = [] trans = [] invar = [] # INIT DEFINITION # # count = 0 init.append(EqualsOrIff(count, BV(0, max_width))) # tracking = False init.append(EqualsOrIff(tracking, FALSE())) # size = 0 init.append(EqualsOrIff(size, BV(0, max_width))) # end = false init.append(EqualsOrIff(end, FALSE())) # INVAR DEFINITION # # !done -> (end = (tracking & (size = count))) invar.append( Implies(Not(done), EqualsOrIff(end, And(tracking, EqualsOrIff(size, count))))) # count <= size invar.append(BVULE(count, size)) # count <= maxval invar.append(BVULE(count, max_bvval)) # size <= maxval invar.append(BVULE(size, max_bvval)) # done -> (end <-> False); invar.append(Implies(done, EqualsOrIff(end, FALSE()))) # done -> (count = 0_8); invar.append(Implies(done, EqualsOrIff(count, BV(0, max_width)))) # done -> (size = 0_8); invar.append(Implies(done, EqualsOrIff(size, BV(0, max_width)))) # done -> (packet = 0_8); invar.append( Implies(done, EqualsOrIff(packet, BV(0, in_port.symbol_type().width)))) # TRANS DEFINITION # # (!end & !done) -> next(!done); trans.append(Implies(And(Not(end), Not(done)), TS.to_next(Not(done)))) # end -> next(done); trans.append(Implies(end, TS.to_next(done))) # done -> next(done); trans.append(Implies(done, TS.to_next(done))) # tracking -> next(tracking); trans.append( Implies(Not(done), Implies(tracking, TS.to_next(tracking)))) # tracking -> (next(packet) = packet); trans.append( Implies(Not(done), Implies(tracking, EqualsOrIff(TS.to_next(packet), packet)))) # !tracking & next(tracking) -> c_push; trans.append( Implies( Not(done), Implies(And(Not(tracking), TS.to_next(tracking)), pos_c_push))) # (c_push & next(tracking)) -> ((packet = in) & (next(packet) = in); trans.append( Implies( Not(done), Implies( And(pos_c_push, TS.to_next(tracking)), And(EqualsOrIff(packet, in_port), EqualsOrIff(TS.to_next(packet), in_port))))) # (c_push & !c_pop & tracking) -> (next(count) = (count + 1_8)); trans.append( Implies( Not(done), Implies( And(pos_c_push, neg_c_pop, tracking), EqualsOrIff(TS.to_next(count), BVAdd(count, BV(1, max_width)))))) # (c_push & size < maxval) -> (next(size) = (size + 1_8)); trans.append( Implies( Not(done), Implies( And(pos_c_push, BVULT(size, max_bvval)), EqualsOrIff(TS.to_next(size), BVAdd(size, BV(1, max_width)))))) # (c_pop & size > 0) -> (next(size) = (size - 1_8)); trans.append( Implies( Not(done), Implies( And(pos_c_pop, BVUGT(size, zero)), EqualsOrIff(TS.to_next(size), BVSub(size, BV(1, max_width)))))) # (!(c_push | c_pop)) -> (next(count) = count); trans.append( Implies( Not(done), Implies(Not(Or(pos_c_push, pos_c_pop)), EqualsOrIff(count, TS.to_next(count))))) # ((c_push | c_pop) & !tracking) -> (next(count) = count); trans.append( Implies( Not(done), Implies(And(Or(pos_c_push, pos_c_pop), Not(tracking)), EqualsOrIff(count, TS.to_next(count))))) # (c_push & size = maxval) -> (next(size) = size); trans.append( Implies( Not(done), Implies(And(pos_c_push, EqualsOrIff(size, max_bvval)), EqualsOrIff(TS.to_next(size), size)))) # (!(c_push | c_pop)) -> (next(size) = size); trans.append( Implies( Not(done), Implies(Not(Or(pos_c_push, pos_c_pop)), EqualsOrIff(size, TS.to_next(size))))) # (!(c_push | c_pop)) -> (next(count) = count); trans.append( Implies( Not(done), Implies(Not(Or(pos_c_push, pos_c_pop)), EqualsOrIff(count, TS.to_next(count))))) # (c_pop & size = 0) -> (next(size) = 0); trans.append( Implies( Not(done), Implies(And(pos_c_pop, EqualsOrIff(size, zero)), EqualsOrIff(TS.to_next(size), zero)))) # (!c_push) -> (next(count) = count); trans.append( Implies(Not(done), Implies(neg_c_push, EqualsOrIff(TS.to_next(count), count)))) init = And(init) invar = And(invar) trans = And(trans) ts = TS() ts.vars, ts.init, ts.invar, ts.trans = set( [tracking, end, packet, count, size]), init, invar, trans return ts
def parse_string(self, strinput): hts = HTS() ts = TS() nodemap = {} node_covered = set([]) translist = [] initlist = [] invarlist = [] invar_props = [] ltl_props = [] def getnode(nid): node_covered.add(nid) if int(nid) < 0: return Ite(BV2B(nodemap[str(-int(nid))]), BV(0,1), BV(1,1)) return nodemap[nid] def binary_op(bvop, bop, left, right): if (get_type(left) == BOOL) and (get_type(right) == BOOL): return bop(left, right) return bvop(B2BV(left), B2BV(right)) def unary_op(bvop, bop, left): if (get_type(left) == BOOL): return bop(left) return bvop(left) for line in strinput.split(NL): linetok = line.split() if len(linetok) == 0: continue if linetok[0] == COM: continue (nid, ntype, *nids) = linetok if ntype == SORT: (stype, *attr) = nids if stype == BITVEC: nodemap[nid] = BVType(int(attr[0])) node_covered.add(nid) if stype == ARRAY: nodemap[nid] = ArrayType(getnode(attr[0]), getnode(attr[1])) node_covered.add(nid) if ntype == WRITE: nodemap[nid] = Store(*[getnode(n) for n in nids[1:4]]) if ntype == READ: nodemap[nid] = Select(getnode(nids[1]), getnode(nids[2])) if ntype == ZERO: nodemap[nid] = BV(0, getnode(nids[0]).width) if ntype == ONE: nodemap[nid] = BV(1, getnode(nids[0]).width) if ntype == ONES: width = getnode(nids[0]).width nodemap[nid] = BV((2**width)-1, width) if ntype == REDOR: width = get_type(getnode(nids[1])).width zeros = BV(0, width) nodemap[nid] = BVNot(BVComp(getnode(nids[1]), zeros)) if ntype == REDAND: width = get_type(getnode(nids[1])).width ones = BV((2**width)-1, width) nodemap[nid] = BVComp(getnode(nids[1]), ones) if ntype == CONSTD: width = getnode(nids[0]).width nodemap[nid] = BV(int(nids[1]), width) if ntype == CONST: width = getnode(nids[0]).width nodemap[nid] = BV(bin_to_dec(nids[1]), width) if ntype == STATE: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN%nid), getnode(nids[0])) ts.add_state_var(nodemap[nid]) if ntype == INPUT: if len(nids) > 1: nodemap[nid] = Symbol(nids[1], getnode(nids[0])) else: nodemap[nid] = Symbol((SN%nid), getnode(nids[0])) ts.add_input_var(nodemap[nid]) if ntype == OUTPUT: if len(nids) > 2: symbol = Symbol(nids[2], getnode(nids[0])) else: symbol = Symbol((SN%nid), getnode(nids[0])) nodemap[nid] = EqualsOrIff(symbol, B2BV(getnode(nids[1]))) invarlist.append(nodemap[nid]) node_covered.add(nid) ts.add_output_var(symbol) if ntype == AND: nodemap[nid] = binary_op(BVAnd, And, getnode(nids[1]), getnode(nids[2])) if ntype == CONCAT: nodemap[nid] = BVConcat(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == XOR: nodemap[nid] = binary_op(BVXor, Xor, getnode(nids[1]), getnode(nids[2])) if ntype == NAND: bvop = lambda x,y: BVNot(BVAnd(x, y)) bop = lambda x,y: Not(And(x, y)) nodemap[nid] = binary_op(bvop, bop, getnode(nids[1]), getnode(nids[2])) if ntype == IMPLIES: nodemap[nid] = BVOr(BVNot(getnode(nids[1])), getnode(nids[2])) if ntype == NOT: nodemap[nid] = unary_op(BVNot, Not, getnode(nids[1])) if ntype == UEXT: nodemap[nid] = BVZExt(B2BV(getnode(nids[1])), int(nids[2])) if ntype == OR: nodemap[nid] = binary_op(BVOr, Or, getnode(nids[1]), getnode(nids[2])) if ntype == ADD: nodemap[nid] = BVAdd(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SUB: nodemap[nid] = BVSub(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGT: nodemap[nid] = BVUGT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == UGTE: nodemap[nid] = BVUGE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULT: nodemap[nid] = BVULT(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == ULTE: nodemap[nid] = BVULE(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == EQ: nodemap[nid] = BVComp(getnode(nids[1]), getnode(nids[2])) if ntype == NE: nodemap[nid] = BVNot(BVComp(getnode(nids[1]), getnode(nids[2]))) if ntype == MUL: nodemap[nid] = BVMul(B2BV(getnode(nids[1])), B2BV(getnode(nids[2]))) if ntype == SLICE: nodemap[nid] = BVExtract(B2BV(getnode(nids[1])), int(nids[3]), int(nids[2])) if ntype == SLL: nodemap[nid] = BVLShl(getnode(nids[1]), getnode(nids[2])) if ntype == SRA: nodemap[nid] = BVAShr(getnode(nids[1]), getnode(nids[2])) if ntype == SRL: nodemap[nid] = BVLShr(getnode(nids[1]), getnode(nids[2])) if ntype == ITE: if (get_type(getnode(nids[2])) == BOOL) or (get_type(getnode(nids[3])) == BOOL): nodemap[nid] = Ite(BV2B(getnode(nids[1])), BV2B(getnode(nids[2])), BV2B(getnode(nids[3]))) else: nodemap[nid] = Ite(BV2B(getnode(nids[1])), getnode(nids[2]), getnode(nids[3])) if ntype == NEXT: if (get_type(getnode(nids[1])) == BOOL) or (get_type(getnode(nids[2])) == BOOL): nodemap[nid] = EqualsOrIff(BV2B(TS.get_prime(getnode(nids[1]))), BV2B(getnode(nids[2]))) else: nodemap[nid] = EqualsOrIff(TS.get_prime(getnode(nids[1])), getnode(nids[2])) translist.append(getnode(nid)) if ntype == INIT: if (get_type(getnode(nids[1])) == BOOL) or (get_type(getnode(nids[2])) == BOOL): nodemap[nid] = EqualsOrIff(BV2B(getnode(nids[1])), BV2B(getnode(nids[2]))) else: nodemap[nid] = EqualsOrIff(getnode(nids[1]), getnode(nids[2])) initlist.append(getnode(nid)) if ntype == CONSTRAINT: nodemap[nid] = BV2B(getnode(nids[0])) invarlist.append(getnode(nid)) if ntype == BAD: nodemap[nid] = getnode(nids[0]) invar_props.append(Not(BV2B(getnode(nid)))) if nid not in nodemap: Logger.error("Unknown node type \"%s\""%ntype) if Logger.level(1): name = lambda x: str(nodemap[x]) if nodemap[x].is_symbol() else x uncovered = [name(x) for x in nodemap if x not in node_covered] uncovered.sort() if len(uncovered) > 0: Logger.warning("Unlinked nodes \"%s\""%",".join(uncovered)) if not self.symbolic_init: init = simplify(And(initlist)) else: init = TRUE() trans = simplify(And(translist)) invar = simplify(And(invarlist)) ts.set_behavior(init, trans, invar) hts.add_ts(ts) return (hts, invar_props, ltl_props)
def Negedge(self, x): if get_type(x).is_bool_type(): return And(x, Not(TS.to_next(x))) return And(BV2B(x), EqualsOrIff(TS.to_next(x), BV(0, 1)))
def Posedge(self, x): if get_type(x).is_bool_type(): return And(Not(x), TS.to_next(x)) return And(EqualsOrIff(x, BV(0, 1)), BV2B(TS.to_next(x)))