Пример #1
0
def dnilensdz(z,spec):
    
    if spec=="magic":
        nlens_total=0.25
    
    # is my normalisation factor okay?
        return nlens_total*cosmo_functions.comoving_distance(z)**2/ cosmo_functions.results.hubble_parameter(z)/normalisation_factor_lenses
    elif spec=="LSST":
         ngal=40
         z0=0.3
         return ngal*1/(2*z0)*(z/z0)**2*np.exp(-z/z0)
Пример #2
0
def size_of_covmatrix(ls, ell_index, clustering_bin_number):

    l = ls[ell_index]

    boundaries = bin_boundaries(clustering_bin_number)
    upperlimits = [
        2 * np.pi * cosmo_functions.comoving_distance(minz) / 10 * H0 / 100
        for minz in boundaries[:-1]
    ]

    index = 0

    while (index < clustering_bin_number):

        if l < upperlimits[index]:
            return clustering_bin_number + 10 - index
        else:
            index = index + 1

    return 10
Пример #3
0
def Wkgal_lensing(chi,i): # i is the ith redshift bin, starting at 0!!!
    
    
    
    zmin=boundaries_sources[i]
    zmax=boundaries_sources[i+1]
    
    z=cosmo_functions.redshift(chi)
    
    if(z>zmax):
        return 0
    
    if(z<zmin):
        zsources=np.linspace(zmin,zmax,10)
    else:
        zsources=np.linspace(z,zmax,10)
    integrand=[dnsource_dz(z)*Wk(chi,cosmo_functions.comoving_distance(z)) for z in zsources]
  #  print("integran dis",integrand)
   # plt.plot(zsources,integrand,'o')
   # plt.show()
   # print( 1/number_of_sources_between_zs(zmin,zmax))
   # print("integral should be",integrate.simps(integrand,zsources))
   # print ("answer should be",1/number_of_sources_between_zs(zmin,zmax),"times",integrate.simps(integrand,zsources),"equals",1/number_of_sources_between_zs(zmin,zmax) *integrate.simps(integrand,zsources))
    return 1/number_of_sources_between_zs(zmin,zmax) *integrate.simps(integrand,zsources) #number of sources should be 2.6 by definition no?
Пример #4
0
def Cls(spec, ls, resolution, number_of_clustering_bins, experiment=None):

    if spec[0] == "shear":
        shears = ["shear_" + str(i) for i in range(0, source_bins)]

        shear_powerspectra = np.zeros((source_bins, source_bins, len(ls)))

        Ws = np.zeros(
            (source_bins, resolution)
        )  #want to evaluate the redshift kernel FOR EACH SOURCE BIN AT EACH Z SAMPLE
        #set up the Ws by evaluating at each z
        zs = np.linspace(0.01, 4, resolution)
        chis = cosmo_functions.comoving_distance(zs)
        for i in range(0, source_bins):
            Ws[i, :] = lensing_kernels.W(shears[i], chis,
                                         number_of_clustering_bins)

        for i in range(0, source_bins):
            Ws1 = Ws[i]
            for j in range(0, source_bins):
                Ws2 = Ws[j]
                if j >= i:
                    shear_powerspectra[i,
                                       j] = shear_powerspectra[j,
                                                               i] = Cls_limber(
                                                                   ls, Ws1,
                                                                   Ws2, Plin,
                                                                   chis, zs)

        return shear_powerspectra
    elif spec[0] == "clustering":

        N_field = N_fields(number_of_clustering_bins)
        bini_powerspectra = np.zeros((N_field, len(ls)))

        z_bin_boundaries = bin_boundaries(number_of_clustering_bins)
        redshift_bin = spec[1]
        zmin = z_bin_boundaries[redshift_bin]
        zmax = z_bin_boundaries[redshift_bin + 1]

        galaxy_bias = 0.95 / cosmo_functions.D_growth_norm1_z0(
            cosmo_functions.z2a((zmin + zmax) / 2))

        zs = np.linspace(zmin, zmax, resolution)
        chis = cosmo_functions.comoving_distance(zs)
        W_clustering = np.zeros(len(chis))

        normalisation = integrate.simps(
            [lensing_kernels.dnilensdz(z, experiment) for z in zs], zs)

        W_clustering = galaxy_bias * lensing_kernels.W(
            "density_" + str(redshift_bin + 1), chis,
            number_of_clustering_bins, experiment) / normalisation

        Ws = np.zeros((source_bins, resolution))

        for i in range(0, source_bins):
            if (zmin < lensing_kernels.boundaries_sources[i + 1]
                ):  #want the lenses to be BEHIND the clustering galaxies
                Ws[i, :] = lensing_kernels.W("shear_" + str(i), chis,
                                             number_of_clustering_bins)

            bini_powerspectra[number_of_clustering_bins + i, :] = Cls_limber(
                ls, W_clustering, Ws[i], Plin, chis, zs)

        bini_powerspectra[redshift_bin, :] = Cls_limber(
            ls, W_clustering, W_clustering, Plin, chis, zs)

        return bini_powerspectra
    else:
        print("spec problem; spec is", spec)
        return
Пример #5
0
def Cls_fnlderivatives(redshift_bin, ls, zresolution_clusteringbins,
                       number_of_clustering_bins, experiment):
    N_field = N_fields(number_of_clustering_bins)
    bini_powerspectrafnlderivs = np.zeros((N_field, len(ls)))

    z_bin_boundaries = bin_boundaries(number_of_clustering_bins)
    zmin = z_bin_boundaries[redshift_bin]
    zmax = z_bin_boundaries[redshift_bin + 1]

    galaxy_bias = 0.95 / cosmo_functions.D_growth_norm1_z0(
        cosmo_functions.z2a((zmin + zmax) / 2))

    zs = np.linspace(zmin, zmax, zresolution_clusteringbins)
    chis = cosmo_functions.comoving_distance(zs)
    W_clustering = np.zeros(len(chis))

    normalisation = integrate.simps(
        [lensing_kernels.dnilensdz(z, experiment) for z in zs], zs)

    W_clustering = galaxy_bias * lensing_kernels.W(
        "density_" + str(redshift_bin + 1), chis, number_of_clustering_bins,
        experiment) / normalisation
    Ws = np.zeros((source_bins, zresolution_clusteringbins))
    Cl_fnlderivs = np.zeros(len(ls))
    fnl_factors = np.zeros((len(chis), len(ls)))
    for z_index in range(0, len(chis)):
        for l_index in range(0, len(ls)):
            k = (ls[l_index] + 1 / 2) / chis[z_index]
            fnl_factors[z_index, l_index] = cosmo_functions.fnl_bias_factor(
                k, chis[z_index])

    for ell_index, l in enumerate(ls):
        Ks = (l + 1 / 2) / chis

        integrand = [
            2 * W_clustering[k] * W_clustering[k] *
            Plin(zs[k], (l + 1 / 2) / chis[k]) / chis[k]**2 * 1 / galaxy_bias *
            1 / Ks[k]**2 * (galaxy_bias - 1) * fnl_factors[k, ell_index]
            for k in range(0, len(chis))
        ]
        Cl_fnlderivs[ell_index] = (integrate.simps(integrand, chis))

    bini_powerspectrafnlderivs[redshift_bin, :] = Cl_fnlderivs
    for i in range(0, source_bins):
        if (zmin < lensing_kernels.boundaries_sources[i + 1]
            ):  #want the lenses to be BEHIND the clustering galaxies
            Ws[i, :] = lensing_kernels.W("shear_" + str(i), chis,
                                         number_of_clustering_bins)

        Cl_fnlderivs = np.zeros(len(ls))

        for ell_index, l in enumerate(ls):
            Ks = (l + 1 / 2) / chis
            integrand = [
                Ws[i, k] * W_clustering[k] * Plin(zs[k],
                                                  (l + 1 / 2) / chis[k]) /
                chis[k]**2 * 1 / galaxy_bias * 1 / Ks[k]**2 *
                (galaxy_bias - 1) * fnl_factors[k, ell_index]
                for k in range(0, len(chis))
            ]

            Cl_fnlderivs[ell_index] = (integrate.simps(integrand, chis))

        bini_powerspectrafnlderivs[number_of_clustering_bins +
                                   i, :] = Cl_fnlderivs

    return bini_powerspectrafnlderivs
Пример #6
0
def WCMB(chi):
    chi_CMB=cosmo_functions.comoving_distance(1100)
    chi_S=chi_CMB

    #want to return CMB lensing efficiency kernel; see eg eq 4 of 1607.01761
    return 3/2*(H0/c)**2*omegam*chi/cosmo_functions.a(chi)*(1-chi/chi_S)
Пример #7
0
def Wkgal_lensing_workingforarrays(chis,i): # i is the ith redshift bin, starting at 0!!!
    
    #this might be sort of hard.
    chis=np.atleast_1d(chis)
    answer=np.zeros(len(chis))
    
    integrand=np.zeros((len(chis),10))
    zmin=boundaries_sources[i]
    zmax=boundaries_sources[i+1]
    
    zs=cosmo_functions.redshift(chis)
    
    answer[zs>zmax]=0
    
    density=1/number_of_sources_between_zs(zmin,zmax)
    
    
    zsources=np.zeros((len(zs),10))
    
    for i in range(0,len(zs)):
        if zs[i]<zmin:
            zsources[i,:]=np.linspace(zmin,zmax,10)
        else:
            zsources[i,:]=np.linspace(zs[i],zmax,10)
            
  

    integrand[zs<zmax,:]=dnsource_dz(zsources[zs<zmax,:])*Wk(chis[zs<zmax,np.newaxis],cosmo_functions.comoving_distance(zsources[zs<zmax,:].flatten()).reshape((len(chis[zs<zmax]),10)))
   # print("integrand is",integrand)
   # print("one over density should be",1/density*integrate.simps(integrand[0],zsources[0]))
    answer[zs<zmax]=density*integrate.simps(integrand[zs<zmax,:],zsources[zs<zmax,:])
 
              
  #  plt.plot(zsources[0],integrand[0],'o')
  #  plt.show()
    return answer#number of sources should be 2.6 by definition no?
Пример #8
0
   # print("one over density should be",1/density*integrate.simps(integrand[0],zsources[0]))
    answer[zs<zmax]=density*integrate.simps(integrand[zs<zmax,:],zsources[zs<zmax,:])
 
              
  #  plt.plot(zsources[0],integrand[0],'o')
  #  plt.show()
    return answer#number of sources should be 2.6 by definition no?
   
        


'''
Galaxy density efficiency kernel
'''
Zs=np.linspace(0.2,1,100)
normalisation_factor_lenses=integrate.simps(cosmo_functions.comoving_distance(Zs)**2/ cosmo_functions.results.hubble_parameter(Zs),Zs)

def dnilensdz(z,spec):
    
    if spec=="magic":
        nlens_total=0.25
    
    # is my normalisation factor okay?
        return nlens_total*cosmo_functions.comoving_distance(z)**2/ cosmo_functions.results.hubble_parameter(z)/normalisation_factor_lenses
    elif spec=="LSST":
         ngal=40
         z0=0.3
         return ngal*1/(2*z0)*(z/z0)**2*np.exp(-z/z0)