Пример #1
0
def test_fuzzyfy():
    features = {"f1": np.array([1.0]), "f2": np.array([5.2]), "f3": np.array([0.9])}

    rules = fuzzyfy(features, **CFG)
    assert_allclose(rules["low"], [0.226666666])
    assert_allclose(rules["medium"], [0.733333333])
    assert_allclose(rules["high"], [0.08000000])
Пример #2
0
def test_fuzzyfy_with_nan():
    features = {
        "f1": np.array([1.0, np.nan, 1.0, 1.0, np.nan]),
        "f2": np.array([5.2, 5.2, np.nan, 5.2, np.nan]),
        "f3": np.array([0.9, 0.9, 0.9, np.nan, np.nan]),
    }

    rules = fuzzyfy(features, **CFG)
    assert_allclose(rules["low"], [0.22666667, np.nan, np.nan, np.nan, np.nan])
    assert_allclose(rules["medium"], [0.733333333, np.nan, np.nan, np.nan, np.nan])
    assert_allclose(rules["high"], [0.08000000, np.nan, np.nan, np.nan, np.nan])

    rules = fuzzyfy(features, **CFG, require="any")
    assert_allclose(rules["low"], [0.22666667, 0.34, 0.34, 0, np.nan])
    assert_allclose(rules["medium"], [0.733333333, 0.6, 0.7, 0.9, np.nan])
    assert_allclose(rules["high"], [0.08, 0.08, 0, 0.08, np.nan])
Пример #3
0
def test_fuzzyfy_all_nan():
    features = {
        "f1": np.array([np.nan]),
        "f2": np.array([np.nan]),
        "f3": np.array([np.nan]),
    }

    rules = fuzzyfy(features, **CFG)
    assert_allclose(rules["low"], [np.nan])
    assert_allclose(rules["medium"], [np.nan])
    assert_allclose(rules["high"], [np.nan])
Пример #4
0
def morello2014(features, cfg):
    """

        FIXME: Think about, should I return 0, or have an assert, and at qc.py
          all qc tests are applied with a try, and in case it fails it flag
          0s.

    """
    #for f in cfg['features']:
    #    assert f in features, \
    #            "morello2014 requires feature %s, which is not available" \
    #            % f

    if not np.all([f in features for f in cfg['features']]):
        print("Not all features (%s) required by morello2014 are available" %
              cfg['features'].keys())
        try:
            return np.zeros(features[features.keys()[0]].shape, dtype='i1')
        except:
            return 0

    f = fuzzyfy(features, cfg)

    ## This is how Timms and Morello defined the Fuzzy Logic approach
    #flag = np.zeros(N, dtype='i1')
    # Flag must be np.array, not a ma.array.
    flag = np.zeros(features[features.keys()[0]].shape, dtype='i1')

    flag[(f['low'] > 0.5) & (f['high'] < 0.3)] = 2
    flag[(f['low'] > 0.9)] = 1
    # Everything else is flagged 3
    flag[(f['low'] <= 0.5) | (f['high'] >= 0.3)] = 3
    # Missing check if threshold was crossed, to flag as 4
    # The thresholds coincide with the end of the ramp for the fuzzy set high,
    #   hence we can simply
    flag[(f['high'] == 1.)] = 4

    return flag
Пример #5
0
def morello2014(features, cfg):
    """

        FIXME: Think about, should I return 0, or have an assert, and at qc.py
          all qc tests are applied with a try, and in case it fails it flag
          0s.

    """
    #for f in cfg['features']:
    #    assert f in features, \
    #            "morello2014 requires feature %s, which is not available" \
    #            % f

    if not np.all([f in features for f in cfg['features']]):
        print("Not all features (%s) required by morello2014 are available" %
                cfg['features'].keys())
        try:
            return np.zeros(features[features.keys()[0]].shape, dtype='i1')
        except:
            return 0

    f = fuzzyfy(features, cfg)

    ## This is how Timms and Morello defined the Fuzzy Logic approach
    #flag = np.zeros(N, dtype='i1')
    # Flag must be np.array, not a ma.array.
    flag = np.zeros(features[list(features.keys())[0]].shape, dtype='i1')

    flag[(f['low'] > 0.5) & (f['high'] < 0.3)] = 2
    flag[(f['low'] > 0.9)] = 1
    # Everything else is flagged 3
    flag[(f['low'] <= 0.5) | (f['high'] >= 0.3)] = 3
    # Missing check if threshold was crossed, to flag as 4
    # The thresholds coincide with the end of the ramp for the fuzzy set high,
    #   hence we can simply
    flag[(f['high'] == 1.)] = 4

    return flag