def map(function, input_list): """ map operation of Couler """ # Enforce the function to run and lock to add into step if callable(function): states._update_steps_lock = False # TODO (terrytangyuan): Support functions with multiple arguments. para = input_list[0] inner = function(para) if inner is None: raise SyntaxError("require function return value") states._update_steps_lock = True else: raise TypeError("require loop over a function to run") inner_dict = output.extract_step_return(inner) template_name = inner_dict["name"] inner_step = Step(name=inner_dict["id"], template=template_name) parameters = [] items_param_name = "%s-para-name" % template_name items_param_dict = {"name": items_param_name} function_template = states.workflow.get_template(template_name) function_template_dict = function_template.to_dict() if "resource" in function_template_dict: # Update the template with the new dynamic `metadata.name`. manifest_dict = yaml.safe_load( function_template_dict["resource"]["manifest"] ) manifest_dict["metadata"]["name"] = ( "'{{inputs.parameters.%s}}'" % items_param_name ) function_template = states.workflow.get_template(template_name) function_template.manifest = pyaml.dump(manifest_dict) # Append this items parameter to input parameters in the template function_template.args.append(items_param_dict) states.workflow.add_template(function_template) input_parameters = [items_param_dict] else: input_parameters = function_template_dict["inputs"]["parameters"] for para_name in input_parameters: parameters.append( { "name": para_name["name"], "value": '"{{item.%s}}"' % para_name["name"], } ) inner_step.arguments = {"parameters": parameters} with_items = [] for para_values in input_list: item = {} if not isinstance(para_values, list): para_values = [para_values] for j in range(len(input_parameters)): para_name = input_parameters[j]["name"] item[para_name] = para_values[j] with_items.append(item) inner_step.with_items = with_items states.workflow.add_step(inner_dict["id"], inner_step) return inner_step
def map(function, *arguments): """ map operation of Couler """ # Enforce the function to run and lock to add into step # Checks the correct syntax if callable(function): states._update_steps_lock = False para = [] x = 0 while x < len(arguments): para.append(arguments[x][0]) x += 1 inner = function(*para) if inner is None: raise SyntaxError("require function return value") states._update_steps_lock = True else: raise TypeError("require loop over a function to run") inner_dict = output.extract_step_return(inner) template_name = inner_dict["name"] inner_step = Step(name=inner_dict["id"], template=template_name) parameters = [] items_param_name = "%s-para-name" % template_name items_param_dict = {"name": items_param_name} function_template = states.workflow.get_template(template_name) function_template_dict = function_template.to_dict() if "resource" in function_template_dict: # Update the template with the new dynamic `metadata.name`. manifest_dict = yaml.safe_load( function_template_dict["resource"]["manifest"]) manifest_dict["metadata"]["name"] = ("'{{inputs.parameters.%s}}'" % items_param_name) function_template = states.workflow.get_template(template_name) function_template.manifest = pyaml.dump(manifest_dict) # Append this items parameter to input parameters in the template function_template.args.append(items_param_dict) states.workflow.add_template(function_template) input_parameters = [items_param_dict] else: input_parameters = function_template_dict["inputs"]["parameters"] for para_name in input_parameters: parameters.append({ "name": para_name["name"], "value": '"{{item.%s}}"' % para_name["name"], }) inner_step.arguments = {"parameters": parameters} # the following part of the code # Adds values to parameters (with items) while it goes # through the *arguments-variable with two loops. # inner loop: # arguments[ind_of_func_param][0], arguments[ind_of_func_param][0]... # Outer loop: # arguments[0][ind_of_func_call], arguments[0][ind_of_func_call]... # With two lists in *arguments # result would be: # 1. pair of items for the function: # arguments[0][0], arguments[1][0] # 2. pair of items for the function: # arguments[0][1], arguments[1][1] # and so on... with_items = [] ind_of_func_call = 0 # the number of calls to be made to function while ind_of_func_call < len(arguments[0]): ind_of_func_param = 0 item = {} # the number of parameters function takes. while ind_of_func_param < len(arguments): # checks if arguments[ind_of_func_param] is a list if not makes it if not isinstance(arguments[ind_of_func_param], list): arguments[ind_of_func_param] = [arguments[ind_of_func_param]] # items are created for the with items part in .yaml para_name = input_parameters[ind_of_func_param]["name"] item[para_name] = arguments[ind_of_func_param][ind_of_func_call] ind_of_func_param += 1 with_items.append(item) ind_of_func_call += 1 # all the created items are added to the step and # then the step is added to .yaml inner_step.with_items = with_items states.workflow.add_step(inner_dict["id"], inner_step) return inner_step