scale_th = np.array([500000,2500000,7000000,15000000]) for fn in datas[:,0]: idx_colorgain = np.where(datas_colorgain[:,0]==fn)[0][0] cg = datas_colorgain[idx_colorgain] hw = cg[4]*cg[5] ss = (scale_th<=hw).sum() s_hw.append(ss) if fn_meta is not None: df = pd.read_csv(fn_meta) datas_meta = df.values datas_meta = np.hstack((datas_meta[:,:5], np.int32(s_hw)[:,None])) dict_im_fq = count_imfq_samemeta(datas_meta,meta_format = 20) flist = [osp.join(fd_in, fn+'.jpg') for fn in datas[:,0]] for idx, fn in enumerate(tqdm(flist)): #img = cv2.imread(fn) #hh,ww,_ = img.shape #gt = np.where(datas[idx][1:]==1)[0][0] gt = datas[idx][-1] if map_gt is not None: if gt>= len(map_gt):
#colorgain_csv = './dat/all18_colorgain1.csv' #out_csv = './dat/all18_info1.csv' info_list = [] df = pd.read_csv(colorgain_csv) datas_colorgain = df.values for fn_gt, fn_meta, map_gt in zip(fn_gts, fn_metas, map_gts): df = pd.read_csv(fn_gt) datas = df.values if fn_meta is not None: df = pd.read_csv(fn_meta) datas_meta = df.values dict_im_fq = count_imfq_samemeta(fn_meta) flist = [osp.join(fd_in, fn + '.jpg') for fn in datas[:, 0]] for idx, fn in enumerate(tqdm(flist)): img = cv2.imread(fn) hh, ww, _ = img.shape if fn_meta is not None: idx_meta = np.where(datas_meta[:, 0] == Path(fn).stem)[0][0] meta = datas_meta[idx_meta][[1, 2, 4]] n_rep = dict_im_fq[Path(fn).stem] else: meta = [math.nan, math.nan, math.nan] n_rep = 1.0