Пример #1
0
    def test_loo(self):
        train, test = get_instance(Table('iris'), 0)
        loocp = LOOClassifier(InverseProbability(LogisticRegressionLearner()),
                              train)
        pred = loocp(test.x, 0.1)
        self.assertEqual(pred, ['Iris-setosa'])

        train, test = get_instance(Table('housing'), 0)
        loocr = LOORegressor(AbsError(LinearRegressionLearner()), train)
        lo, hi = loocr(test.x, 0.1)
        self.assertLess(hi - lo, 20)
Пример #2
0
    def test_inverse_probability(self):
        tab = Table('iris')
        train, test = get_instance(tab, 0)
        tcp = TransductiveClassifier(InverseProbability(NaiveBayesLearner()),
                                     train)
        pred = tcp(test.x, 0.1)
        self.assertEqual(pred, ['Iris-setosa'])

        train, test = get_instance(tab, 0)
        tcp = TransductiveClassifier(InverseProbability(NaiveBayesLearner()))
        tcp.fit(train)
        pred = tcp(test.x, 0.1)
        self.assertEqual(pred, ['Iris-setosa'])
Пример #3
0
 def test_validate_transductive(self):
     tab = Table('iris')
     eps = 0.1
     correct, num, all = 0, 0, len(tab)
     for i in range(all):
         train, test = get_instance(tab, i)
         tcp = TransductiveClassifier(
             InverseProbability(LogisticRegressionLearner()), train)
         pred = tcp(test.x, eps)
         if test.get_class() in pred: correct += 1
         num += len(pred)
     self.assertAlmostEqual(correct / all, 1.0 - eps, delta=0.01)
Пример #4
0
 def test_validate_cross_regression(self):
     tab = shuffle_data(Table('housing'))
     eps = 0.1
     correct, num, all = 0, 0, len(tab)
     for i in range(all):
         train, test = get_instance(tab, i)
         ccr = CrossRegressor(AbsError(LinearRegressionLearner()), 5,
                              shuffle_data(train))
         y_min, y_max = ccr(test.x, eps)
         if y_min <= test.y <= y_max: correct += 1
         num += y_max - y_min
     self.assertAlmostEqual(correct / all, 1.0 - eps, delta=0.02)
Пример #5
0
 def test_validate_cross_classification(self):
     tab = shuffle_data(Table('iris'))
     eps = 0.1
     correct, num, all = 0, 0, len(tab)
     for i in range(all):
         train, test = get_instance(tab, i)
         ccp = CrossClassifier(InverseProbability(NaiveBayesLearner()), 5,
                               train)
         pred = ccp(test.x, eps)
         if test.get_class() in pred: correct += 1
         num += len(pred)
     self.assertAlmostEqual(correct / all, 1.0 - eps, delta=0.02)
Пример #6
0
 def test_validate_regression(self):
     tab = Table('housing')
     eps = 0.1
     correct, num, all = 0, 0, len(tab)
     for i in range(all):
         train, test = get_instance(tab, i)
         train, calibrate = split_data(shuffle_data(train), 2, 1)
         icr = InductiveRegressor(AbsError(LinearRegressionLearner()),
                                  train, calibrate)
         y_min, y_max = icr(test.x, eps)
         if y_min <= test.y <= y_max: correct += 1
         num += y_max - y_min
     self.assertAlmostEqual(correct / all, 1.0 - eps, delta=0.02)
Пример #7
0
 def test_validate_inductive(self):
     eps = 0.1
     correct, num, all = 0, 0, len(self.tab)
     for i in range(all):
         train, test = get_instance(self.tab, i)
         train, calibrate = split_data(shuffle_data(train), 2, 1)
         icp = InductiveClassifier(
             InverseProbability(LogisticRegressionLearner()), train,
             calibrate)
         pred = icp(test.x, eps)
         if test.get_class() in pred: correct += 1
         num += len(pred)
     self.assertAlmostEqual(correct / all, 1.0 - eps, delta=0.01)
Пример #8
0
 def test_individual_classification(self):
     train, test = get_instance(Table('iris'), 123)  # borderline case
     train = shuffle_data(train)
     ccp = CrossClassifier(InverseProbability(LogisticRegressionLearner()),
                           3, train)
     pred = ccp.predict(test.x)
     cred, conf = pred.credibility(), pred.confidence()
     self.assertLess(cred, 0.5)
     d = 1e-6
     self.assertEqual(len(ccp(test.x, 1 - (conf - d))), 1)
     self.assertGreater(len(ccp(test.x, 1 - (conf + d))), 1)
     self.assertEqual(len(ccp(test.x, (cred + d))), 0)
     self.assertGreater(len(ccp(test.x, (cred - d))), 0)
Пример #9
0
 def test_SVM(self):
     iris = Table('iris')
     tab = Table(iris.X[50:], iris.Y[50:] - 1)  # versicolor, virginica
     # clear cases
     train, test = get_instance(tab, 30)
     train, calibrate = next(RandomSampler(train, 2, 1))
     icp = InductiveClassifier(SVMDistance(skl_svm.SVC()), train, calibrate)
     pred = icp(test.x, 0.1)
     self.assertEqual(pred, ['v1'])
     train, test = get_instance(tab, 85)
     train, calibrate = next(RandomSampler(train, 2, 1))
     icp = InductiveClassifier(SVMDistance(skl_svm.SVC()), train, calibrate)
     pred = icp(test.x, 0.1)
     self.assertEqual(pred, ['v2'])
     # border case
     train, test = get_instance(tab, 27)
     train, calibrate = next(RandomSampler(train, 2, 1))
     icp = InductiveClassifier(SVMDistance(skl_svm.SVC()), train, calibrate)
     pred = icp(test.x, 0.2)
     self.assertEqual(pred, [])
     pred = icp(test.x, 0.01)
     self.assertEqual(pred, ['v1', 'v2'])
Пример #10
0
    def test_cross_classification(self):
        tab = Table('iris')
        train, test = get_instance(tab, 0)
        train = shuffle_data(train)
        ccp = CrossClassifier(InverseProbability(LogisticRegressionLearner()),
                              3, train)
        pred = ccp(test.x, 0.1)
        self.assertEqual(pred, ['Iris-setosa'])

        ccp = CrossClassifier(InverseProbability(LogisticRegressionLearner()),
                              3)
        ccp.fit(train)
        pred = ccp(test.x, 0.1)
        self.assertEqual(pred, ['Iris-setosa'])
Пример #11
0
 def setUp(self):
     self.tab = Table('iris')
     train, self.test = get_instance(self.tab, 0)
     self.train, self.calibrate = split_data(shuffle_data(train), 2, 1)
Пример #12
0
 def test_nearest_neighbours(self):
     tab = Table('iris')
     train, test = get_instance(tab, 0)
     tcp = TransductiveClassifier(KNNDistance(Euclidean), train)
     pred = tcp(test.x, 0.1)
     self.assertEqual(pred, ['Iris-setosa'])
Пример #13
0
 def setUp(self):
     self.train, self.test = get_instance(Table('housing'), 0)
     self.train, self.calibrate = split_data(shuffle_data(self.train), 2, 1)