def bare_dict(): negations = set(json.load(open(os.path.join(DATA_DIR, 'negations.json')))) with open(os.path.join(DATA_DIR, "degrees.json")) as f: degrees = json.load(f) with open(os.path.join(DATA_DIR, 'pos.txt')) as f: pos_emotion = set([x.strip() for x in f.readlines()]) with open(os.path.join(DATA_DIR, 'neg.txt')) as f: neg_emotion = set([x.strip() for x in f.readlines()]) # with open(os.path.join(DATA_DIR, 'pos_eva.txt')) as f: # pos_envalute = set([x.strip() for x in f.readlines()]) # with open(os.path.join(DATA_DIR, 'neg_eva.txt')) as f: # neg_envalute = set([x.strip() for x in f.readlines()]) # places = os.path.join(os.path.dirname(__file__), "../dictionaries/places.txt") # tokenizer.load_userdict(places) # with open(os.path.join(DATA_DIR, 'pos_sentence.txt')) as f1,\ # open(os.path.join(DATA_DIR, 'neg_sentence.txt')) as f2: # s1 = set([x.strip() for x in f1.readlines()]) # s2 = set([x.strip() for x in f2.readlines()]) # pos_emotion.union(s1) # neg_emotion.union(s2) pos_neg = pos_emotion.union(neg_emotion) # pos_neg_eva = pos_envalute.union(neg_envalute) tokenizer.load_userdict(pos_neg)
def main(): jieba_instance = Tokenizer() seg_list = jieba_instance.cut("我来到北京清华大学", cut_all=True) print(type(seg_list)) print("Full Mode: " + "/ ".join(seg_list)) # 全模式 seg_list = jieba_instance.cut("他来到了网易杭研大厦") # 默认是精确模式 print(", ".join(seg_list)) seg_list = jieba_instance.cut_for_search( "小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 print(", ".join(seg_list)) t1 = datetime.datetime.now() initialize() t2 = datetime.datetime.now() print("initialize costs:%s" % (t2 - t1)) print(lcut("我来到北京清华大学")) print(list(cut("我来到北京清华大学"))) print(cut("我来到北京清华大学", cut_all=True)) print(lcut_for_search("我来到北京清华大学")) print(list(cut_for_search("我来到北京清华大学"))) print(pseg.lcut("我来到北京清华大学")) print(list(pseg.cut("我来到北京清华大学"))) s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。" r = analyse.extract_tags(s) print(r) r = analyse.textrank(s, withWeight=True) print(r) tr = TextRank(jieba_instance) print(tr.textrank(s, topK=2, withWeight=True)) tf = TFIDF(jieba_instance) print(tf.extract_tags(s, topK=10)) result = jieba_instance.tokenize('永和服装饰品有限公司') for tk in result: print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2])) print(tokenize('永和服装饰品有限公司', mode="search")) jieba_instance.load_userdict(["卧槽"]) load_userdict(set(["卧槽"]))
def accept_set_as_arg(self): jieba.load_userdict(set([]))
def accept_list_as_arg(self): jieba.load_userdict([])
def accept_string_as_arg(self): jieba.load_userdict("")