Пример #1
0
         if (not feasibleActions) or len(moveSeq)>wordLength:
             break
         
         print "Run: %d\t Iteration: %d\t Word: %d\t factor (%d|%d)" %(i, numIter, t, len(currFactors), len(allowedFactors))
         while feasibleActions:
         
             # If there are no feasible actions available
             if not feasibleActions:
                 break
             
             chosenAction = random.choice(list(feasibleActions))
             
             tentativeMoveSeq = moveSeq+[chosenAction]
             
             # Compute all k-subsequences
             tempFactors = generateKSubsequences(tentativeMoveSeq, 2)
                                 
             # Check if the factors generated are subset of allowed factors
             if tempFactors.issubset(allowedFactors):
                 currState = getNextPosition(arenaDimensions, currState, chosenAction)
                 currFactors.update(tempFactors)
                 moveSeq = deepcopy(tentativeMoveSeq)
                 numIter += 1
                 numFactors.append(len(currFactors))
                 break
             else:
                 feasibleActions.remove(chosenAction)                
 
 # Check if learning is complete or not
 if currFactors == allowedFactors:
     learningComplete = True
Пример #2
0
 def computeSPkGrammar(self, kval, moveSeq):
     '''Compute the SP-k grammar from the input move sequence'''
     return generateKSubsequences(moveSeq, kval)
Пример #3
0
                    break

                print "Run: %d\t Iteration: %d\t Word: %d\t factor (%d|%d)" % (
                    i, numIter, t, len(currFactors), len(allowedFactors))
                while feasibleActions:

                    # If there are no feasible actions available
                    if not feasibleActions:
                        break

                    chosenAction = random.choice(list(feasibleActions))

                    tentativeMoveSeq = moveSeq + [chosenAction]

                    # Compute all k-subsequences
                    tempFactors = generateKSubsequences(tentativeMoveSeq, 2)

                    # Check if the factors generated are subset of allowed factors
                    if tempFactors.issubset(allowedFactors):
                        currState = getNextPosition(arenaDimensions, currState,
                                                    chosenAction)
                        currFactors.update(tempFactors)
                        moveSeq = deepcopy(tentativeMoveSeq)
                        numIter += 1
                        numFactors.append(len(currFactors))
                        break
                    else:
                        feasibleActions.remove(chosenAction)

        # Check if learning is complete or not
        if currFactors == allowedFactors: