def analyze_average_commute(date_val): # Display a contiguous commute time from a source station to a target station # Get DB data session = manage.get_session() stop_names = manage.get_stop_names() station_id_dict = station_id2name('../data/stops_ids_and_names.txt') # Create a graph representation of the train stops G = create_train_graph(session, stop_names, station_id_dict, date_val) target = 4600 # station_id for Tel-Aviv Hashalom time_len = 60*24 hour_vec = np.array(range(24*60))/60 minute_vec = np.array(range(24*60)) % 60 time_indx_real = map(lambda x: '%04d'%x, hour_vec*100 + minute_vec) # Calculation of the DOT graph algorithms dist_vec, path_vec = dynamic_all_to_one(G, target, time_len) display_graph(G, draw_edge_label=False) station_id = 5410 xindx = range(len(time_indx_real)) plt.xticks(xindx[240::240], time_indx_real[240::240]), plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5), plt.grid(), plt.ylim(0, 150) plt.xlabel('time of day'), plt.ylabel('time of commute in minutes'), plt.title(('Commute Time to %s') % (station_id_dict[4600])) station_id = 3500 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) station_id=8700 plt.plot(xindx[240:], dist_vec[station_id][240:], label=station_id_dict[station_id], linewidth=2.5) plt.legend() plt.show()
return dist_vec, path_vec ### ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': # Create graph # time_len = 2 # G = create_toy_graph(10, 25, time_len=time_len) # G = create_predefind_graph() import src.manage session = src.manage.get_session() stop_names = src.manage.get_stop_names() station_id_dict = station_id2name('../data/stops_ids_and_names.txt') date_val = datetime.date(2014, 1, 1) G = create_train_graph(session, stop_names, station_id_dict, date_val) target = 4600 time_len = 60*24 hour_vec = np.array(range(24*60))/60 minuete_vec = np.array(range(24*60)) % 60 time_indx_real = map(lambda x: '%04d'%x, hour_vec*100 + minuete_vec) dist_vec, path_vec = dynamic_all_to_one(G, target, time_len) display_graph(G, draw_edge_label=False)