Пример #1
0
    def train_epoch(epoch, steps):
        model.train()
        loss_avg = 0.0
        acc_avg = 0.0
        counter = 0
        train_loader_iter = iter(train_loader)
        for _ in trange(len(train_loader_iter)):
            steps += 1
            counter += 1
            images, targets = next(train_loader_iter)
            images = images.to(device)
            targets = targets.to(device)
            model_output = model(images)
            loss = criterion(model_output, targets)
            loss_avg += loss.item()
            acc = criteria.calculate_acc(model_output, targets)
            acc_avg += acc.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            writer.add_scalar("Train Loss", loss.item(), steps)
            writer.add_scalar("Train Acc", acc.item(), steps)
        print "Epoch {}, Total Iter: {}, Train Avg Loss: {:.6f}".format(
            epoch, counter, loss_avg / float(counter))

        return steps
Пример #2
0
 def validate_epoch(epoch, steps):
     model.eval()
     loss_avg = 0.0
     acc_avg = 0.0
     xe_avg = 0.0
     counter = 0
     val_loader_iter = iter(val_loader)
     for _ in trange(len(val_loader_iter)):
         counter += 1
         images, targets, _ = next(val_loader_iter)
         images = images.to(device)
         targets = targets.to(device)
         model_output = model(images)
         scene_prob, scene_logprob = env.prepare(model_output)
         action, action_logprob, _ = env.action(scene_logprob, sample=False)
         pred = env.step(scene_prob, action)
         loss, scores, xe_loss_item = env.loss(action[0], action_logprob,
                                               pred, scene_prob, targets,
                                               error_function)
         loss_avg += loss.item()
         acc = criteria.calculate_acc(scores, targets)
         acc_avg += acc.item()
         xe_avg += xe_loss_item
     print("Epoch {}, Valid Avg XE: {:.6f}, Valid Avg Acc: {:.4f}".format(
         epoch, xe_avg / float(counter), acc_avg / float(counter)))
Пример #3
0
    def train_epoch(epoch, steps):
        model.train()
        xe_avg = 0.0
        counter = 0
        train_loader_iter = iter(train_loader)
        for _ in trange(len(train_loader_iter)):
            steps += 1
            counter += 1
            images, targets, all_action_rule = next(train_loader_iter)
            images = images.to(device)
            targets = targets.to(device)
            all_action_rule_device = []
            for action_rule in all_action_rule:
                action_rule = action_rule.to(device)
                all_action_rule_device.append(action_rule)
            model_output = model(images)
            scene_prob, scene_logprob = env.prepare(model_output)
            action, action_logprob, all_action_prob = env.action(scene_logprob)
            pred = env.step(scene_prob, action)
            loss, scores, xe_loss_item = env.loss(action[0], action_logprob,
                                                  pred, scene_prob, targets,
                                                  error_function)
            aux_loss = criteria.aux_loss(all_action_prob,
                                         all_action_rule_device)
            final_loss = loss + args.aux * aux_loss
            acc = criteria.calculate_acc(scores, targets)
            xe_avg += xe_loss_item
            optimizer.zero_grad()
            final_loss.backward()
            optimizer.step()
        print("Epoch {}, Total Iter: {}, Train Avg XE: {:.6f}".format(
            epoch, counter, xe_avg / float(counter)))

        return steps
Пример #4
0
 def test_epoch(epoch, steps):
     model.eval()
     loss_avg = 0.0
     acc_avg = 0.0
     counter = 0
     test_loader_iter = iter(test_loader)
     for _ in trange(len(test_loader_iter)):
         counter += 1
         images, targets = next(test_loader_iter)
         images = images.to(device)
         targets = targets.to(device)
         model_output = model(images)
         loss = criterion(model_output, targets)
         loss_avg += loss.item()
         acc = criteria.calculate_acc(model_output, targets)
         acc_avg += acc.item()
     writer.add_scalar("Test Avg Loss", loss_avg / float(counter), steps)
     writer.add_scalar("Test Avg Acc", acc_avg / float(counter), steps)
     print "Epoch {}, Test  Avg Loss: {:.6f}, Test  Avg Acc: {:.4f}".format(
         epoch, loss_avg / float(counter), acc_avg / float(counter))
Пример #5
0
    def evaluate(self, subset):
        self.model.eval()

        counter = 0
        loss_avg = 0.0
        loss_meta_avg = 0.0
        acc_avg = 0.0
        acc_multihead_avg = [0.0] * 3

        acc_regime = init_acc_regime(self.args.dataset)

        if subset == 'train':
            loader = self.trainloader
        elif subset == 'val':
            loader = self.validloader
        else:
            loader = self.testloader
        for batch_data in tqdm(loader, subset):
            counter += 1

            image, target, meta_target, structure_encoded, data_file = batch_data
            image = renormalize(image)

            image = image.cuda()
            target = target.cuda()
            if self.use_meta:
                meta_target = meta_target.cuda()

            with torch.no_grad():
                model_outputs = self.model(image)
                if len(model_outputs) == 3:
                    model_output, meta_pred, model_output_heads = model_outputs
                else:
                    model_output, meta_pred = model_outputs
                    model_output_heads = None

            loss = self.criterion(model_output, target)
            loss_avg += loss.item()
            acc = criteria.calculate_acc(model_output, target)
            acc_avg += acc.item()
            if self.use_meta:
                if len(meta_pred.shape) > 2:
                    meta_pred = meta_pred[range(meta_pred.shape[0]), target]
                loss_meta = self.criterion_meta(meta_pred, meta_target)
                loss_meta_avg += loss_meta.item()
            if self.args.multihead:
                acc_multihead = [
                    criteria.calculate_acc(x, target)
                    for x in model_output_heads
                ]
                for i, x in enumerate(acc_multihead):
                    acc_multihead_avg[i] += x.item()

            if acc_regime is not None:
                update_acc_regime(self.args.dataset, acc_regime, model_output,
                                  target, structure_encoded, data_file)

        if counter > 0:
            if self.use_meta:
                print(
                    "{} - Avg Loss: {:.6f} META {:.6f}, Test  Avg Acc: {:.4f}".
                    format(subset, loss_avg / float(counter),
                           loss_meta_avg / float(counter),
                           acc_avg / float(counter)))
            else:
                print("{} - Avg Loss: {:.6f}, Test  Avg Acc: {:.4f}".format(
                    subset, loss_avg / float(counter),
                    acc_avg / float(counter)))
            if self.args.multihead:
                print(
                    f'Multihead: {[x / float(counter) for x in acc_multihead_avg]}'
                )

        if acc_regime is not None:
            for key in acc_regime.keys():
                if acc_regime[key] is not None:
                    if acc_regime[key][1] > 0:
                        acc_regime[key] = float(
                            acc_regime[key][0]) / acc_regime[key][1] * 100
                    else:
                        acc_regime[key] = None

        return loss_avg / float(counter), acc_avg / float(counter), acc_regime
Пример #6
0
    def train(self, epoch):
        self.model.train()

        counter = 0
        loss_avg = 0.0
        loss_meta_avg = 0.0
        acc_avg = 0.0
        acc_multihead_avg = [0.0] * 3

        for batch_data in tqdm(self.trainloader, f'Train epoch {epoch}'):
            counter += 1

            image, target, meta_target, structure_encoded, data_file = batch_data
            image = renormalize(image)

            image = image.cuda()
            target = target.cuda()
            if self.use_meta:
                meta_target = meta_target.cuda()

            model_outputs = self.model(image)
            if len(model_outputs) == 3:
                model_output, meta_pred, model_output_heads = model_outputs
            else:
                model_output, meta_pred = model_outputs
                model_output_heads = None

            loss = self.criterion(model_output, target)
            loss_avg += loss.item()
            acc = criteria.calculate_acc(model_output, target)
            acc_avg += acc.item()
            if self.use_meta:
                if len(meta_pred.shape) > 2:
                    meta_pred = meta_pred[range(meta_pred.shape[0]), target]
                loss_meta = self.criterion_meta(meta_pred, meta_target)
                loss_meta_avg += loss_meta.item()
                loss += self.use_meta * loss_meta
            if self.args.multihead:
                loss_head = [
                    self.criterion(output, target, reduction='none')
                    for output in model_output_heads
                ]
                target_one_hot = torch.zeros_like(model_output_heads[0])
                target_one_hot.scatter_(1, target.view(-1, 1), 1.0)

                if self.args.multihead_mode is None:
                    weights = [1 / len(model_output_heads)
                               ] * len(model_output_heads)
                else:
                    probs = [
                        target_one_hot * output.detach().sigmoid() +
                        (1 - target_one_hot) * (1 - output.detach().sigmoid())
                        for output in model_output_heads
                    ]
                    if self.args.multihead_mode == 'prob':
                        probs_sum = sum(probs)
                        weights = [prob / probs_sum for prob in probs]
                    elif self.args.multihead_mode == 'eprob':
                        e_probs = [prob.exp() for prob in probs]
                        e_probs_sum = sum(e_probs)
                        weights = [prob / e_probs_sum for prob in e_probs]
                    else:
                        raise ValueError(
                            f'Unsupported argument for multihead_mode: {self.args.multihead_mode}'
                        )

                loss_multihead = sum([
                    weights[i] * loss_head[i] for i in range(len(loss_head))
                ]).mean()
                loss += self.args.multihead_w * loss_multihead
                acc_multihead = [
                    criteria.calculate_acc(x, target)
                    for x in model_output_heads
                ]
                for i, x in enumerate(acc_multihead):
                    acc_multihead_avg[i] += x.item()
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

        if self.use_meta:
            print(
                "Epoch {}, Train Avg Loss: {:.6f} META: {:.6f}, Train Avg Acc: {:.4f}"
                .format(epoch, loss_avg / float(counter),
                        loss_meta_avg / float(counter),
                        acc_avg / float(counter)))
        else:
            print("Epoch {}, Train Avg Loss: {:.6f}, Train Avg Acc: {:.4f}".
                  format(epoch, loss_avg / float(counter),
                         acc_avg / float(counter)))
        if self.args.multihead:
            print(
                f'Multihead: {[x / float(counter) for x in acc_multihead_avg]}'
            )

        return loss_avg / float(counter), acc_avg / float(counter)