Пример #1
0
def main(filepath):
    image = Image.open(r'images/' + filepath).convert('RGB')
    image = transformer(image)
    if torch.cuda.is_available() and cfg.use_gpu:
        image = image.cuda()
    image = image.view(1, *image.size())
    image = torch.autograd.Variable(image)

    encoder = crnn.Encoder(3, cfg.hidden_size)
    # no dropout during inference
    decoder = crnn.Decoder(cfg.hidden_size,
                           num_classes,
                           dropout_p=0.0,
                           max_length=cfg.max_width)

    if torch.cuda.is_available() and cfg.use_gpu:
        encoder = encoder.cuda()
        decoder = decoder.cuda()
        map_location = 'cuda'
    else:
        map_location = 'cpu'

    encoder.load_state_dict(torch.load(cfg.encoder, map_location=map_location))
    print('loading pretrained encoder models from {}.'.format(cfg.encoder))
    decoder.load_state_dict(torch.load(cfg.decoder, map_location=map_location))
    print('loading pretrained decoder models from {}.'.format(cfg.decoder))

    encoder.eval()
    decoder.eval()

    encoder_out = encoder(image)

    max_length = 20
    decoder_input = torch.zeros(1).long()
    decoder_hidden = decoder.initHidden(1)
    if torch.cuda.is_available() and cfg.use_gpu:
        decoder_input = decoder_input.cuda()
        decoder_hidden = decoder_hidden.cuda()

    words, prob = seq2seq_decode(encoder_out, decoder, decoder_input,
                                 decoder_hidden, max_length)
    with open('data.txt', 'a', encoding='utf-8') as f:
        print(filepath + ',{0}'.format(words), file=f)
    print('predict_string: {} => predict_probility: {}'.format(words, prob))
Пример #2
0
def main():
    image = Image.open(cfg.img_path).convert('RGB')
    image = transformer(image)
    if torch.cuda.is_available() and cfg.use_gpu:
        image = image.cuda()
    image = image.view(1, *image.size())  # (1, *image.size()) # logic ???
    image = torch.autograd.Variable(image) 

    encoder = crnn.Encoder(channel_size=3, hidden_size=cfg.hidden_size)
    # no dropout during inference
    decoder = crnn.Decoder(hidden_size=cfg.hidden_size, output_size=num_classes, dropout_p=0.0, max_length=cfg.max_width)

    if torch.cuda.is_available() and cfg.use_gpu:
        encoder = encoder.cuda()
        decoder = decoder.cuda()
        map_location = 'cuda'
    else:
        map_location = 'cpu'

    encoder.load_state_dict(torch.load(cfg.encoder, map_location=map_location))
    print('loading pretrained encoder models from {}.'.format(cfg.encoder))
    decoder.load_state_dict(torch.load(cfg.decoder, map_location=map_location))
    print('loading pretrained decoder models from {}.'.format(cfg.decoder))

    encoder.eval()
    decoder.eval()

    encoder_out = encoder(image)    

    max_length = 20
    decoder_input = torch.zeros(1).long()  # char label
    decoder_hidden = decoder.initHidden(batch_size=1)
    if torch.cuda.is_available() and cfg.use_gpu:
        decoder_input = decoder_input.cuda()
        decoder_hidden = decoder_hidden.cuda()

    words, prob = seq2seq_decode(encoder_out, decoder, decoder_input, decoder_hidden, max_length)
    print('predict_string: {} => predict_probility: {}'.format(words, prob))
Пример #3
0
    if args.cuda:
        detect_net.load_state_dict(
            copyStateDict(torch.load(args.trained_model)))
    else:
        detect_net.load_state_dict(
            copyStateDict(torch.load(args.trained_model, map_location='cpu')))

    if args.cuda:
        detect_net = detect_net.cuda()
        detect_net = torch.nn.DataParallel(detect_net)
        cudnn.benchmark = False

    detect_net.eval()

    # load rec_net
    encoder = crnn.Encoder(3, args.hidden_size)
    # no dropout during inference
    decoder = crnn.Decoder(args.hidden_size,
                           num_classes,
                           dropout_p=0.0,
                           max_length=args.max_width)
    print(encoder)
    print(decoder)
    if torch.cuda.is_available() and args.use_gpu:
        encoder = encoder.cuda()
        decoder = decoder.cuda()
        map_location = 'cuda'
    else:
        map_location = 'cpu'

    encoder.load_state_dict(torch.load(args.encoder,
def main():
    if not os.path.exists(cfg.model):
        os.makedirs(cfg.model)

    # create train dataset
    train_dataset = dataset.TextLineDataset(text_line_file=cfg.train_list,
                                            transform=None)
    sampler = dataset.RandomSequentialSampler(train_dataset, cfg.batch_size)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=cfg.batch_size,
        shuffle=False,
        sampler=sampler,
        num_workers=int(cfg.num_workers),
        collate_fn=dataset.AlignCollate(img_height=cfg.img_height,
                                        img_width=cfg.img_width))

    # create test dataset
    test_dataset = dataset.TextLineDataset(text_line_file=cfg.eval_list,
                                           transform=dataset.ResizeNormalize(
                                               img_width=cfg.img_width,
                                               img_height=cfg.img_height))
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              shuffle=False,
                                              batch_size=1,
                                              num_workers=int(cfg.num_workers))

    # create crnn/seq2seq/attention network
    encoder = crnn.Encoder(channel_size=3, hidden_size=cfg.hidden_size)
    # for prediction of an indefinite long sequence
    decoder = crnn.Decoder(hidden_size=cfg.hidden_size,
                           output_size=num_classes,
                           dropout_p=0.1,
                           max_length=cfg.max_width)
    print(encoder)
    print(decoder)
    encoder.apply(utils.weights_init)
    decoder.apply(utils.weights_init)
    if cfg.encoder:
        print('loading pretrained encoder model from %s' % cfg.encoder)
        encoder.load_state_dict(torch.load(cfg.encoder))
    if cfg.decoder:
        print('loading pretrained encoder model from %s' % cfg.decoder)
        decoder.load_state_dict(torch.load(cfg.decoder))

    # create input tensor
    image = torch.FloatTensor(cfg.batch_size, 3, cfg.img_height, cfg.img_width)
    text = torch.LongTensor(cfg.batch_size)

    criterion = torch.nn.NLLLoss()

    assert torch.cuda.is_available(
    ), "Please run \'train.py\' script on nvidia cuda devices."
    encoder.cuda()
    decoder.cuda()
    image = image.cuda()
    text = text.cuda()
    criterion = criterion.cuda()

    # train crnn
    train(image,
          text,
          encoder,
          decoder,
          criterion,
          train_loader,
          teach_forcing_prob=cfg.teaching_forcing_prob)

    # do evaluation after training
    evaluate(image, text, encoder, decoder, test_loader, max_eval_iter=100)