Пример #1
0
 def __new__(cls, mu, omega, symbol=None):
     mu, omega = sympify(mu), sympify(omega)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 2 * mu**mu / (gamma(mu) * omega**mu) * x**(2 * mu - 1) * exp(
         -mu / omega * x**2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
     return obj
Пример #2
0
 def __new__(cls, nu, symbol=None):
     nu = sympify(nu)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1 / (sqrt(nu) * beta_fn(S(1) / 2, nu / 2)) * (1 + x**2 / nu)**(
         -(nu + 1) / 2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #3
0
    def __new__(cls, a, symbol=None):
        a = sympify(a)

        x = symbol or SingleContinuousPSpace.create_symbol()

        pdf = sqrt(2 / pi) * x**2 * exp(-x**2 / (2 * a**2)) / a**3
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        return obj
Пример #4
0
    def __new__(cls, mu, s, symbol=None):
        mu, s = sympify(mu), sympify(s)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(x-mu)/s)/(s*(1+exp(-(x-mu)/s))**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #5
0
    def __new__(cls, mu, s, symbol=None):
        mu, s = sympify(mu), sympify(s)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(x - mu) / s) / (s * (1 + exp(-(x - mu) / s))**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #6
0
    def __new__(cls, R, symbol=None):
        R = sympify(R)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = 2 / (pi * R**2) * sqrt(R**2 - x**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(-R, R))
        return obj
Пример #7
0
 def __new__(cls, alpha, beta, sigma, symbol = None):
     alpha, beta, sigma = sympify(alpha), sympify(beta), sympify(sigma)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = (exp(-alpha*log(x/sigma)-beta*log(x/sigma)**2)
            *(alpha/x+2*beta*log(x/sigma)/x))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf,
                                          set = Interval(sigma, oo))
     return obj
Пример #8
0
    def __new__(cls, a, symbol = None):
        a = sympify(a)

        x = symbol or SingleContinuousPSpace.create_symbol()

        pdf = sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo))
        return obj
Пример #9
0
    def __new__(cls, rate, symbol=None):
        _value_check(rate > 0, "Rate must be positive.")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = rate * exp(-rate*x)
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.rate = rate
        return obj
Пример #10
0
    def __new__(cls, R, symbol=None):
        R = sympify(R)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = 2/(pi*R**2)*sqrt(R**2-x**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(-R, R))
        return obj
Пример #11
0
    def __new__(cls, n, symbol=None):
        n = sympify(n)

        x = symbol or SingleContinuousPSpace.create_symbol()
        k = Dummy("k")
        pdf =1/factorial(n-1)*Sum((-1)**k*binomial(n,k)*(x-k)**(n-1), (k,0,floor(x)))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0,n))
        return obj
Пример #12
0
    def __new__(cls, mean, std, symbol=None):
        mean, std = sympify(mean), sympify(std)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(log(x)-mean)**2 / (2*std**2)) / (x*sqrt(2*pi)*std)
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.mean = mean
        obj.std = std
        return obj
Пример #13
0
    def __new__(cls, mean, std, symbol = None):

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(x-mean)**2 / (2*std**2)) / (sqrt(2*pi)*std)
        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.mean = mean
        obj.std = std
        obj.variance = std**2
        return obj
Пример #14
0
    def __new__(cls, mean, std, symbol=None):
        _value_check(std > 0, "Standard deviation must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(x-mean)**2 / (2*std**2)) / (sqrt(2*pi)*std)
        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.mean = mean
        obj.std = std
        obj.variance = std**2
        return obj
Пример #15
0
    def __new__(cls, xm, alpha, symbol=None):
        _value_check(xm > 0, "Xm must be positive")
        _value_check(alpha > 0, "Alpha must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = alpha * xm**alpha / x**(alpha+1)
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(xm, oo))
        obj.xm = xm
        obj.alpha = alpha
        return obj
Пример #16
0
 def __new__(cls, alpha, beta, sigma, symbol=None):
     alpha, beta, sigma = sympify(alpha), sympify(beta), sympify(sigma)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = (exp(-alpha * log(x / sigma) - beta * log(x / sigma)**2) *
            (alpha / x + 2 * beta * log(x / sigma) / x))
     obj = SingleContinuousPSpace.__new__(cls,
                                          x,
                                          pdf,
                                          set=Interval(sigma, oo))
     return obj
Пример #17
0
    def __new__(cls, n, symbol=None):
        n = sympify(n)

        x = symbol or SingleContinuousPSpace.create_symbol()
        k = Dummy("k")
        pdf = 1 / factorial(n - 1) * Sum(
            (-1)**k * binomial(n, k) * (x - k)**(n - 1), (k, 0, floor(x)))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, n))
        return obj
Пример #18
0
    def __new__(cls, left, right, symbol=None):
        left, right = sympify(left), sympify(right)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = Piecewise((S.Zero, x < left), (S.Zero, x > right),
                        (S.One / (right - left), True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.left = left
        obj.right = right
        return obj
Пример #19
0
    def __new__(cls, mean, std, symbol=None):
        mean, std = sympify(mean), sympify(std)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(log(x) - mean)**2 /
                  (2 * std**2)) / (x * sqrt(2 * pi) * std)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.mean = mean
        obj.std = std
        return obj
Пример #20
0
    def __new__(cls, k, theta, symbol=None):
        _value_check(k > 0, "k must be positive")
        _value_check(theta > 0, "Theta must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = x**(k-1) * exp(-x/theta) / (gamma(k)*theta**k)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.k = k
        obj.theta = theta
        return obj
Пример #21
0
    def __new__(cls, rate, symbol=None):
        rate = sympify(rate)

        _value_check(rate > 0, "Rate must be positive.")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = rate * exp(-rate * x)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.rate = rate
        return obj
Пример #22
0
    def __new__(cls, left, right, symbol=None):
        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = Piecewise(
                (S.Zero, x<left),
                (S.Zero, x>right),
                (S.One/(right-left), True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.left = left
        obj.right = right
        return obj
Пример #23
0
    def __new__(cls, a, b, c, symbol=None):
        a, b, c = sympify(a), sympify(b), sympify(c)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = Piecewise(
                (2*(x-a)/((b-a)*(c-a)), And(a<=x, x<c)),
                (2/(b-a), Eq(x,c)),
                (2*(b-x)/((b-a)*(b-c)), And(c<x, x<=b)),
                (S.Zero, True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #24
0
    def __new__(cls, a, b, c, symbol=None):
        a, b, c = sympify(a), sympify(b), sympify(c)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = Piecewise(
            (2 * (x - a) / ((b - a) * (c - a)), And(a <= x, x < c)),
            (2 / (b - a), Eq(x, c)),
            (2 * (b - x) / ((b - a) * (b - c)), And(c < x, x <= b)),
            (S.Zero, True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #25
0
    def __new__(cls, xm, alpha, symbol=None):
        xm, alpha = sympify(xm), sympify(alpha)

        _value_check(xm > 0, "Xm must be positive")
        _value_check(alpha > 0, "Alpha must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = alpha * xm**alpha / x**(alpha + 1)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(xm, oo))
        obj.xm = xm
        obj.alpha = alpha
        return obj
Пример #26
0
    def __new__(cls, alpha, beta, symbol=None):
        _value_check(alpha > 0, "Alpha must be positive")
        _value_check(beta > 0, "Beta must be positive")

        alpha, beta = sympify(alpha), sympify(beta)

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = beta * (x/alpha)**(beta-1) * exp(-(x/alpha)**beta) / alpha

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.alpha = alpha
        obj.beta = beta
        return obj
Пример #27
0
    def __new__(cls, mean, std, symbol=None):
        mean, std = sympify(mean), sympify(std)

        _value_check(std > 0, "Standard deviation must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = exp(-(x - mean)**2 / (2 * std**2)) / (sqrt(2 * pi) * std)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.mean = mean
        obj.std = std
        obj.variance = std**2
        return obj
Пример #28
0
    def __new__(cls, alpha, beta, symbol=None):
        alpha, beta = sympify(alpha), sympify(beta)

        _value_check(alpha > 0, "Alpha must be positive")
        _value_check(beta > 0, "Beta must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, 1))
        obj.alpha = alpha
        obj.beta = beta
        return obj
Пример #29
0
    def __new__(cls, alpha, beta, symbol=None):
        alpha, beta = sympify(alpha), sympify(beta)

        _value_check(alpha > 0, "Alpha must be positive")
        _value_check(beta > 0, "Beta must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = x**(alpha-1) * (1-x)**(beta-1) / beta_fn(alpha, beta)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, 1))
        obj.alpha = alpha
        obj.beta = beta
        return obj
Пример #30
0
    def __new__(cls, k, theta, symbol=None):
        k, theta = sympify(k), sympify(theta)

        _value_check(k > 0, "k must be positive")
        _value_check(theta > 0, "Theta must be positive")

        x = symbol or SingleContinuousPSpace.create_symbol()
        pdf = x**(k - 1) * exp(-x / theta) / (gamma(k) * theta**k)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.k = k
        obj.theta = theta
        return obj
Пример #31
0
 def compute_cdf(self, expr, **kwargs):
     from sympy import Lambda, Min
     z = Dummy('z', real=True, bounded=True)
     result = SingleContinuousPSpace.compute_cdf(self, expr, **kwargs)
     result = result(z).subs({Min(z, self.right): z,
                              Min(z, self.left, self.right): self.left})
     return Lambda(z, result)
Пример #32
0
 def __new__(cls, name, mu, omega):
     mu, omega = sympify(mu), sympify(omega)
     x = Symbol(name)
     pdf = 2 * mu**mu / (gamma(mu) * omega**mu) * x**(2 * mu - 1) * exp(
         -mu / omega * x**2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
     return obj
Пример #33
0
 def __new__(cls, name, nu):
     nu = sympify(nu)
     x = Symbol(name)
     pdf = 1 / (sqrt(nu) * beta_fn(S(1) / 2, nu / 2)) * (1 + x**2 / nu)**(
         -(nu + 1) / 2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #34
0
def ContinuousRV(symbol, density, set=Interval(-oo, oo)):
    """
    Create a Continuous Random Variable given the following:

    -- a symbol
    -- a probability density function
    -- set on which the pdf is valid (defaults to entire real line)

    Returns a RandomSymbol.

    Many common continuous random variable types are already implemented.
    This function should be necessary only very rarely.

    Examples
    ========

    >>> from sympy import Symbol, sqrt, exp, pi
    >>> from sympy.stats import ContinuousRV, P, E

    >>> x = Symbol('x')
    >>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
    >>> X = ContinuousRV(x, pdf)

    >>> E(X)
    0
    >>> P(X>0)
    1/2
    """
    return SingleContinuousPSpace(symbol, density, set).value
Пример #35
0
    def __new__(cls, name, R):
        R = sympify(R)

        x = Symbol(name)
        pdf = 2/(pi*R**2)*sqrt(R**2-x**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(-R, R))
        return obj
Пример #36
0
    def __new__(cls, name, R):
        R = sympify(R)

        x = Symbol(name)
        pdf = 2/(pi*R**2)*sqrt(R**2 - x**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(-R, R))
        return obj
Пример #37
0
    def __new__(cls, name, mu, s):
        mu, s = sympify(mu), sympify(s)

        x = Symbol(name)
        pdf = exp(-(x-mu)/s)/(s*(1+exp(-(x-mu)/s))**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #38
0
    def __new__(cls, name, a):
        a = sympify(a)

        x = Symbol(name)

        pdf = sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        return obj
Пример #39
0
    def __new__(cls, name, mu, s):
        mu, s = sympify(mu), sympify(s)

        x = Symbol(name)
        pdf = exp(-(x - mu)/s)/(s*(1 + exp(-(x - mu)/s))**2)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        return obj
Пример #40
0
    def __new__(cls, name, a):
        a = sympify(a)

        x = Symbol(name)

        pdf = sqrt(2/pi)*x**2*exp(-x**2/(2*a**2))/a**3
        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo))
        return obj
Пример #41
0
 def integrate(self, expr, rvs=None, **kwargs):
     from sympy import Max, Min
     result = SingleContinuousPSpace.integrate(self, expr, rvs, **kwargs)
     result = result.subs({
         Max(self.left, self.right): self.right,
         Min(self.left, self.right): self.left
     })
     return result
Пример #42
0
 def compute_cdf(self, expr, **kwargs):
     from sympy import Lambda, Min
     z = Dummy('z', real=True, bounded=True)
     result = SingleContinuousPSpace.compute_cdf(self, expr, **kwargs)
     result = result(z).subs({
         Min(z, self.right): z,
         Min(z, self.left, self.right): self.left
     })
     return Lambda(z, result)
Пример #43
0
    def __new__(cls, name, left, right):
        left, right = sympify(left), sympify(right)

        x = Symbol(name)
        pdf = Piecewise((S.One / (right - left), And(left <= x, x <= right)),
                        (S.Zero, True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.left = left
        obj.right = right
        return obj
Пример #44
0
    def __new__(cls, name, rate):
        rate = sympify(rate)

        _value_check(rate > 0, "Rate must be positive.")

        x = Symbol(name)
        pdf = rate * exp(-rate*x)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.rate = rate
        return obj
Пример #45
0
    def __new__(cls, name, left, right):
        left, right = sympify(left), sympify(right)

        x = Symbol(name)
        pdf = Piecewise(
                (S.One/(right - left), And(left <= x, x <= right)),
                (S.Zero, True))

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.left = left
        obj.right = right
        return obj
Пример #46
0
    def __new__(cls, name, xm, alpha):
        xm, alpha = sympify(xm), sympify(alpha)

        _value_check(xm > 0, "Xm must be positive")
        _value_check(alpha > 0, "Alpha must be positive")

        x = Symbol(name)
        pdf = alpha * xm**alpha / x**(alpha + 1)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(xm, oo))
        obj.xm = xm
        obj.alpha = alpha
        return obj
Пример #47
0
    def __new__(cls, name, alpha, beta):
        alpha, beta = sympify(alpha), sympify(beta)

        _value_check(alpha > 0, "Alpha must be positive")
        _value_check(beta > 0, "Beta must be positive")

        x = Symbol(name)
        pdf = beta * (x/alpha)**(beta - 1) * exp(-(x/alpha)**beta) / alpha

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.alpha = alpha
        obj.beta = beta
        return obj
Пример #48
0
    def __new__(cls, name, mean, std):
        mean, std = sympify(mean), sympify(std)

        _value_check(std > 0, "Standard deviation must be positive")

        x = Symbol(name)
        pdf = exp(-(x - mean)**2 / (2*std**2)) / (sqrt(2*pi)*std)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf)
        obj.mean = mean
        obj.std = std
        obj.variance = std**2
        return obj
Пример #49
0
    def __new__(cls, name, k, theta):
        k, theta = sympify(k), sympify(theta)

        _value_check(k > 0, "k must be positive")
        _value_check(theta > 0, "Theta must be positive")

        x = Symbol(name)
        pdf = x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.k = k
        obj.theta = theta
        return obj
Пример #50
0
    def __new__(cls, name, alpha, beta):
        alpha, beta = sympify(alpha), sympify(beta)

        _value_check(alpha > 0, "Alpha must be positive")
        _value_check(beta > 0, "Beta must be positive")

        x = Symbol(name)
        pdf = beta * (x/alpha)**(beta-1) * exp(-(x/alpha)**beta) / alpha

        obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
        obj.alpha = alpha
        obj.beta = beta
        return obj
Пример #51
0
 def __new__(cls, x0, gamma, symbol=None):
     x0, gamma = sympify(x0), sympify(gamma)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1 / (pi * gamma * (1 + ((x - x0) / gamma)**2))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #52
0
 def __new__(cls, mu, b, symbol=None):
     mu, b = sympify(mu), sympify(b)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1/(2*b)*exp(-Abs(x-mu)/b)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #53
0
 def __new__(cls, p, a, b, symbol = None):
     p, a, b = sympify(p), sympify(a), sympify(b)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = a*p/x*((x/b)**(a*p)/(((x/b)**a+1)**(p+1)))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #54
0
 def __new__(cls, k, symbol = None):
     k = sympify(k)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 2**(1-k/2)*x**(k-1)*exp(-x**2/2)/gamma(k/2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo))
     return obj
Пример #55
0
 def __new__(cls, x0, gamma, symbol = None):
     x0, gamma = sympify(x0), sympify(gamma)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1/(pi*gamma*(1+((x-x0)/gamma)**2))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #56
0
 def __new__(cls, mu, b, symbol=None):
     mu, b = sympify(mu), sympify(b)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1 / (2 * b) * exp(-Abs(x - mu) / b)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #57
0
 def __new__(cls, p, a, b, symbol=None):
     p, a, b = sympify(p), sympify(a), sympify(b)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = a * p / x * ((x / b)**(a * p) / (((x / b)**a + 1)**(p + 1)))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf)
     return obj
Пример #58
0
 def __new__(cls, k, symbol=None):
     k = sympify(k)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo))
     return obj
Пример #59
0
 def __new__(cls, mu, omega, symbol = None):
     mu, omega = sympify(mu), sympify(omega)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 2*mu**mu/(gamma(mu)*omega**mu)*x**(2*mu-1)*exp(-mu/omega*x**2)
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo))
     return obj
Пример #60
0
 def __new__(cls, a, b, symbol=None):
     a, b = sympify(a), sympify(b)
     x = symbol or SingleContinuousPSpace.create_symbol()
     pdf = 1 / (pi * sqrt((x - a) * (b - x)))
     obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(a, b))
     return obj