def __init__(self, free_sections_only=True, problem=None, constraint=None): self.p = Problem() if problem is not None: self.p = problem self.free_sections_only = free_sections_only self.section_constraint = constraint or section_constraint self.clear_excluded_times()
class Scheduler(object): """High-level API that wraps the course scheduling feature. ``free_sections_only``: bool. Determines if the only the available sections should be used when using courses provided. Defaults to True. ``problem``: Optional problem instance to provide. If None, the default one is created. """ def __init__(self, free_sections_only=True, problem=None): self.p = Problem() if problem is not None: self.p = problem self.free_sections_only = free_sections_only self.clear_excluded_times() def clear_excluded_times(self): """Clears all previously set excluded times.""" self._excluded_times = [] return self def exclude_time(self, start, end, days): """Added an excluded time by start, end times and the days. ``start`` and ``end`` are in military integer times (e.g. - 1200 1430). ``days`` is a collection of integers or strings of fully-spelt, lowercased days of the week. """ self._excluded_times.append(TimeRange(start, end, days)) return self def exclude_times(self, *tuples): """Adds multiple excluded times by tuple of (start, end, days) or by TimeRange instance. ``start`` and ``end`` are in military integer times (e.g. - 1200 1430). ``days`` is a collection of integers or strings of fully-spelt, lowercased days of the week. """ for item in tuples: if isinstance(item, TimeRange): self._excluded_times.append(item) else: self.exclude_time(*item) return self def find_schedules(self, courses=None, generator=False, start=0): """Returns all the possible course combinations. Assumes no duplicate courses. ``return_generator``: If True, returns a generator instead of collection. Generators are friendlier to your memory and save computation time if not all solutions are used. """ self.p.reset() self.create_variables(courses) self.create_constraints(courses) self.p.restore_point(start) if generator: return self.p.iter_solutions() return self.p.get_solutions() # internal methods -- can be overriden for custom use. def get_sections(self, course): """Internal use. Returns the sections to use for the solver for a given course. """ return course.available_sections if self.free_sections_only else course.sections def time_conflict(self, schedule): """Internal use. Determines when the given time range conflicts with the set of excluded time ranges. """ for timerange in self._excluded_times: if timerange.conflicts_with(schedule): return False return True def create_variables(self, courses): """Internal use. Creates all variables in the problem instance for the given courses. If given a dict of {course: sections}, will use the provided sections. """ has_sections = isinstance(courses, dict) for course in courses: self.p.add_variable(course, courses.get(course, []) if has_sections else self.get_sections(course)) def create_constraints(self, courses): """Internal use. Creates all constraints in the problem instance for the given courses. """ for i, course1 in enumerate(courses): for j, course2 in enumerate(courses): if i <= j: continue self.p.add_constraint(section_constraint, [course1, course2]) self.p.add_constraint(self.time_conflict, [course1])
from csp import Problem p = Problem() pvars = "R2 R3 R5 R6 R7 R8 R9 R10 X Y Z".split() # 0-151 is the possible finite range of the variables p.addvars(pvars, xrange(152)) p.addrule("R7 == X + 11") p.addrule("R8 == Y + 11") p.addrule("R9 == Y + 4") p.addrule("R10 == Z + 4") p.addrule("R7 + R8 == 40") p.addrule("R5 == R8 + R9") p.addrule("R6 == R9 + R10") p.addrule("R2 == 40 + R5") p.addrule("R3 == R5 + R6") p.addrule("R2 + R3 == 151") p.addrule("Y == X + Z") for sol in p.xsolutions(): print[sol[k] for k in "XYZ"]
def setUp(self): self.p = Problem(BacktrackingSolver()) self.p.add_variable('x', range(3)) self.p.add_variable('y', range(3))
class PointConstaintIntegrationTestForBacktracker(unittest.TestCase): def setUp(self): self.p = Problem(BacktrackingSolver()) self.p.add_variable('x', range(3)) self.p.add_variable('y', range(3)) def result(self, *iter): return tuple(dict(x=x, y=y) for x, y in iter) def test_reset_problem(self): result1 = self.p.get_solutions() self.p.reset() self.p.add_variable('x', range(3)) self.p.add_variable('y', range(3)) result2 = self.p.get_solutions() self.assertEqual(result1, result2) def test_save_and_restore_iteration_position(self): it = self.p.iter_solutions() next(it) ref = self.p.save_point() second_answer = next(it) self.p.reset() self.p.add_variable('x', range(3)) self.p.add_variable('y', range(3)) self.p.restore_point(ref) answer = next(self.p.iter_solutions()) self.assertEqual(second_answer, answer) def test_with_no_constraints_should_have_all_permutations(self): #self.p.add_constraint(lambda x, y: x != y, ['x', 'y']) expected = self.result((0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)) assertEqualContents(self.p.get_solutions(), expected) def test_should_have_non_equal_permutations(self): expected = self.result((0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)) self.p.add_constraint(lambda x, y: x != y, ['x', 'y']) assertEqualContents(self.p.get_solutions(), expected) def test_should_have_non_equal_permutations_or_sum_to_3(self): expected = self.result((0, 1), (0, 2), (1, 0), (2, 0)) self.p.add_constraint(lambda x, y: x != y, ['x', 'y']) self.p.add_constraint(lambda x, y: x + y != 3, ['x', 'y'], [0, 0]) assertEqualContents(self.p.get_solutions(), expected) def test_should_have_non_equal_permutations_while_x_is_lte_1(self): expected = self.result((0, 1), (0, 2), (1, 0), (1, 2)) self.p.add_constraint(lambda x, y: x != y, ['x', 'y']) self.p.add_constraint(lambda x: x <= 1, ['x'], [0]) assertEqualContents(self.p.get_solutions(), expected)
def setUp(self): self.p = Problem(BruteForceSolver()) self.p.add_variable('x', range(3)) self.p.add_variable('y', range(3))