def test_extend_structured(self):
     with filetext('1,1.0\n2,2.0\n') as fn:
         csv = CSV(fn, 'r+', schema='{x: int32, y: float32}',
                         delimiter=',')
         csv.extend([(3, 3)])
         assert (list(csv) == [[1, 1.0], [2, 2.0], [3, 3.0]]
              or list(csv) == [{'x': 1, 'y': 1.0},
                               {'x': 2, 'y': 2.0},
                               {'x': 3, 'y': 3.0}])
Пример #2
0
    def test_a_mode(self):
        text = ("id, name, balance\n1, Alice, 100\n2, Bob, 200\n"
                "3, Charlie, 300\n4, Denis, 400\n5, Edith, 500")
        with filetext(text) as fn:
            csv = CSV(fn, 'a')
            csv.extend([(6, 'Frank', 600),
                        (7, 'Georgina', 700)])

            assert 'Georgina' in set(csv.py[:, 'name'])
Пример #3
0
def reconstructCsv(fuzzed: dict) -> bytes:
    csv = []
    count = 0
    for i in fuzzed['values']:
        if not isinstance(i, bytes):
            i = str(i).encode() # bad?
        if count == fuzzed['cpl']:
            count = 0
            csv.extend([i, b"\n"])
        else:
            csv.extend([i, b","])
            count += 1
    return b''.join(csv)
 def test_extend_structured(self):
     with filetext('1,1.0\n2,2.0\n') as fn:
         csv = CSV(fn, 'r+', schema='{x: int32, y: float32}', delimiter=',')
         csv.extend([(3, 3)])
         assert (list(csv) == [[1, 1.0], [2, 2.0], [3, 3.0]]
                 or list(csv) == [{
                     'x': 1,
                     'y': 1.0
                 }, {
                     'x': 2,
                     'y': 2.0
                 }, {
                     'x': 3,
                     'y': 3.0
                 }])
Пример #5
0
 def test_extend_structured(self):
     with filetext('1,1.0\n2,2.0\n') as fn:
         csv = CSV(fn, 'r+', schema='{x: int32, y: float32}',
                         delimiter=',')
         csv.extend([(3, 3)])
         assert tuplify(tuple(csv)) == ((1, 1.0), (2, 2.0), (3, 3.0))