Пример #1
0
 def pretrain_decade(decades):
     model.compile(PRETRAIN(lr=PRETRAIN_LR), "categorical_crossentropy")
     unbroken = True
     for decade in range(1, decades+1):
         try:
             model.fit(X, y, nb_epoch=10, validation_data=val)
         except KeyboardInterrupt:
             unbroken = False
         spoken.append("RMSprop pretrain epoch {}: {}".format(decade * 10, keras_speak(model, petofi)))
         print(spoken[-1])
         log(spoken[-1])
         if not unbroken:
             log("RMSprop pretrain BROKEN with KEYBOARD_INTERRUPT")
             return
Пример #2
0
 def finetune_decade(decades):
     model.compile("adam", "categorical_crossentropy")
     unbroken = True
     for decade in range(1, decades+1):
         try:
             model.fit(X, y, nb_epoch=10, validation_data=val)
         except KeyboardInterrupt:
             unbroken = False
         spoken.append("SGD finetune epoch {}: {}".format(10 * decade, keras_speak(model, petofi)))
         print(spoken[-1])
         log(spoken[-1])
         if not unbroken:
             log("SGD finetune BROKEN with KEYBOARD_INTERRUPT")
             return
Пример #3
0
 def finetune_century(century):
     model.compile("adam", "categorical_crossentropy")
     unbroken = True
     for decade in range(1, century+1):
         try:
             model.fit_generator(the_generator, samples_per_epoch=petofi.N, nb_epoch=1)
         except KeyboardInterrupt:
             unbroken = False
         spoken.append("SGD finetune epoch {}: {}".format(10 * decade, keras_speak(model, petofi)))
         print(spoken[-1])
         log(spoken[-1])
         if not unbroken:
             log("SGD finetune BROKEN with KEYBOARD_INTERRUPT")
             return
Пример #4
0
 def sample(stochastic=False):
     smpl = keras_speak(model, petofi, stochastic, ngrams=SAMPLE_NO_NGRAMS)
     log(smpl)
     print(smpl)
     return smpl