Пример #1
0
def plot_window_trans_perpix(window_number):
    """
    Plot of the mean value of trans_norm_cher per pixel
    :param window_number: 1 or 2 to choose between the first or second window
    :return: plot the camera pixels with the mean value of trans_norm_cher for each of the pixels
    """
    pix_trans_cher = np.loadtxt(
        "data/mean_transmittance_per_pixel_{0}_wdw.txt".format(
            num[window_number - 1]),
        usecols=1,
        skiprows=1,
        unpack=True)

    fig = plt.figure()
    ax = plt.gca()
    ax.set_alpha(0)
    CameraDisplay(DigiCam.geometry, pix_trans_cher, cmap='viridis',
                  title='').highlight_pixels(range(1296),
                                             color='k',
                                             linewidth=0.2)
    CameraDisplay(
        DigiCam.geometry, pix_trans_cher, cmap='viridis',
        title='').add_colorbar(label="Transmittance $\otimes$ norm\_cher")
    plt.annotate("mean: {0:.2f}\%".format(np.mean(pix_trans_cher) * 100.),
                 xy=(-430, 490),
                 xycoords="data",
                 va="center",
                 ha="center",
                 bbox=dict(boxstyle="round", fc="w", ec="silver"))
    plt.xlim(-550, 550)
    plt.ylim(-550, 550)
    fig.savefig('{0}/trans_values_perpixel_{1}wdw.pdf'.format(
        folder[window_number - 1], num[window_number - 1]))
    plt.show()
Пример #2
0
    def create(self, image, coords, title, coeff, fitter):
        df = fitter.get_curve(coords.xi_mg, coords.yi_mg, coeff)

        camera = CameraDisplay(coords.geom, ax=self.ax,
                               image=image,
                               cmap='viridis')
        camera.add_colorbar()
        camera.colorbar.set_label("Residual RMS (p.e.)", fontsize=20)
        camera.image = image
        camera.colorbar.ax.tick_params(labelsize=30)

        amplitude, x0, y0, sigma, offset = coeff
        radius = fitter.find_containment_radius(coords, coeff, 0.8)
        radius_deg = radius * coords.degperm
        x70 = x0 + radius
        y70 = y0
        z = offset + amplitude * np.exp(
            - ((((x70 - x0) ** 2) / (2 * sigma ** 2)) +
               (((y70 - y0) ** 2) / (2 * sigma ** 2))))

        CS = self.ax.contour(coords.xi_mg, coords.yi_mg, df,
                             linewidths=0.5, colors='r', levels=[z])
        text = "80% Containment \n({:.3} degrees)".format(radius_deg)
        self.ax.text(x70, y70, text, color='r')

        self.fig.suptitle("Jupiter RMS ON-OFF")
        self.ax.set_title(title)
        self.ax.axis([-0.06, 0.03, -0.06, 0.03])
        # self.ax.axis('off')

        minor_locator = AutoMinorLocator(10)
        self.ax.xaxis.set_minor_locator(minor_locator)
        self.ax.yaxis.set_minor_locator(minor_locator)
Пример #3
0
def plot_window_trans_perpix(fname):
    """ IMPORTANT
    display mean value on the camera
    Plot of the mean value of trans_norm_cher per pixel
    :param window_number: 1 or 2 to choose between the first or second window
    :return: plot the camera pixels with the mean value of trans_norm_cher for each of the pixels
    """
    ave_irradiance_per_pixel = np.loadtxt(fname=fname,
                                          usecols=1,
                                          skiprows=1,
                                          unpack=True)

    fig = plt.figure()
    ax = plt.gca()
    ax.set_alpha(0)
    CameraDisplay(DigiCam.geometry,
                  ave_irradiance_per_pixel,
                  cmap='viridis',
                  title='').highlight_pixels(range(1296), color='k', linewidth=0.2)

    CameraDisplay(DigiCam.geometry,
                  ave_irradiance_per_pixel,
                  cmap='viridis', title='').add_colorbar(label="I [A]")
    # plt.annotate("mean: {0:.2f}\%".format(np.mean(ave_irradiance_per_pixel)*100.),
    #              xy=(-430, 490),
    #              xycoords="data",
    #              va="center",
    #              ha="center",
    #              bbox=dict(boxstyle="round", fc="w", ec="silver"))

    plt.xlim(-550, 550)
    plt.ylim(-550, 550)

    return fig, ax
Пример #4
0
def plot_model(fitter, geometry, save=False, ids=''):
    """
    Create a CameraDisplay object showing the spatial model fitted to
    the current event

    Parameters
    -------
    save: bool
        Save and close the figure if True, return it otherwise
    ids: string
        Can be used to modify the save location

    Returns
    -------
    cam_display: `ctapipe.visualization.CameraDisplay`
        Camera image using matplotlib

    """

    params = fitter.end_parameters
    rl = 1 + params['rl'] if params['rl'] >= 0 else 1 / (1 - params['rl'])
    mu = asygaussian2d(params['charge'] * geometry.pix_area.to_value(u.m**2),
                       geometry.pix_x.value, geometry.pix_y.value,
                       params['x_cm'], params['y_cm'],
                       params['wl'] * params['length'], params['length'],
                       params['psi'], rl)

    fig, axes = plt.subplots(figsize=(10, 8))
    cam_display = CameraDisplay(geometry, mu, ax=axes)
    cam_display.add_colorbar(ax=axes)

    if save:
        cam_display.axes.get_figure().savefig('event/' + ids + '_model.png')
        plt.close()
    return None if save else cam_display
Пример #5
0
    def go(self):
        fig = plt.figure()
        ax = fig.add_subplot(111)
        disp = None
        source = hessio_event_source(self.filename, requested_event=24)
        for event in source:
            self.calib.calibrate(event)
            for i in range(50):
                ipix = np.random.randint(0, 2048)
                samp = event.dl0.tel[1]['pe_samples'][0][ipix]
                # plt.plot(range(len(samp)),samp)

            plt.show()
            if disp is None:
                geom = event.inst.subarray.tel[1].camera
                disp = CameraDisplay(geom)
                # disp.enable_pixel_picker()
                disp.add_colorbar()
                plt.show(block=False)
            #
            im = event.dl1.tel[1].image[0]
            mask = tailcuts_clean(geom,
                                  im,
                                  picture_thresh=10,
                                  boundary_thresh=5)
            im[~mask] = 0.0
            maxpe = max(event.dl1.tel[1].image[0])
            disp.image = im
            print(np.mean(im), '+/-', np.std(im))

        plt.show()
Пример #6
0
    def draw_camera(self, tel, data, axes=None):
        """
        Draw a camera image using the correct geometry.

        Parameters
        ----------
        tel : int
            The telescope you want drawn.
        data : `np.array`
            1D array with length equal to npix.
        axes : `matplotlib.axes.Axes`
            A matplotlib axes object to plot on, or None to create a new one.

        Returns
        -------
        `ctapipe.visualization.CameraDisplay`
        """

        geom = self.get_geometry(tel)
        axes = axes if axes is not None else plt.gca()
        camera = CameraDisplay(geom, ax=axes)
        camera.image = data
        camera.cmap = plt.cm.viridis
        # camera.add_colorbar(ax=axes, label="Amplitude (ADC)")
        # camera.set_limits_percent(95)  # autoscale
        return camera
Пример #7
0
def camera_image(input_file, ax):
    first_event = input_file.get_event(0)
    geom = CameraGeometry.guess(*first_event.meta.pixel_pos[telid],
                                first_event.meta.optical_foclen[telid])
    camera = CameraDisplay(geom, ax=ax)
    camera.cmap = plt.cm.viridis
    import time

    def update(iframe, source):
        data = next(source)
        print(iframe)
        # data = np.zeros((2048,128))
        # data[iframe,0] = iframe
        camera.image = data
        return camera.pixels,

    source = get_data(input_file)

    anim = FuncAnimation(fig,
                         update,
                         fargs=[source],
                         blit=True,
                         frames=1000,
                         interval=1,
                         repeat=False)

    plt.show()
Пример #8
0
    def draw_camera(self, tel, data, axes=None):
        """
        Draw a camera image using the correct geometry.

        Parameters
        ----------
        tel : int
            The telescope you want drawn.
        data : `np.array`
            1D array with length equal to npix.
        axes : `matplotlib.axes.Axes`
            A matplotlib axes object to plot on, or None to create a new one.

        Returns
        -------
        `ctapipe.visualization.CameraDisplay`
        """

        geom = self.get_geometry(tel)
        axes = axes if axes is not None else plt.gca()
        camera = CameraDisplay(geom, ax=axes)
        camera.image = data
        camera.cmap = plt.cm.viridis
        # camera.add_colorbar(ax=axes, label="Amplitude (ADC)")
        # camera.set_limits_percent(95)  # autoscale
        return camera
Пример #9
0
 def plot_camera(self):  #TPA
     fig2 = plt.figure(2, figsize=(7, 7))
     ax2 = fig2.add_subplot(111)
     # print(self.geom)
     disp = CameraDisplay(self.geom)
     disp.add_colorbar()
     image = [1] * 2048
     disp.image = image
Пример #10
0
def get_observation_parameters(charge: np.array,
                               peak: np.array,
                               cam_name: str,
                               cutflow: CutFlow,
                               boundary_threshold: float = None,
                               picture_threshold: float = None,
                               min_neighbours: float = None,
                               plot: bool = False,
                               cut: bool = True):
    """
    :param charge: Charge image
    :param peak: Peak time image
    :param cam_name: Camera name. e.g. FlashCam, ASTRICam, etc.
    :param cutflow: Cutflow for selection
    :param boundary_threshold: (Optional) Cleaning parameter: boundary threshold
    :param picture_threshold: (Optional) Cleaning parameter: picture threshold
    :param min_neighbours: (Optional) Cleaning parameter: minimum neighbours
    :param plot: If True, for each observation a plot will be shown (Default: False)
    :param cut: If true, tight else loose
    :return: hillas containers, leakage container, number of islands, island IDs, timing container, timing gradient
    """
    charge_biggest, mask = clean_charge(charge, cam_name, boundary_threshold,
                                        picture_threshold, min_neighbours)

    camera = get_camera(cam_name)
    geometry = camera.geometry
    charge_biggest, camera_biggest, n_islands = mask_from_biggest_island(
        charge, geometry, mask)
    if cut:
        if cutflow.cut(CFO_MIN_PIXEL, charge_biggest):
            return
        if cutflow.cut(CFO_MIN_CHARGE, np.sum(charge_biggest)):
            return
    if cutflow.cut(CFO_NEGATIVE_CHARGE, charge_biggest):
        return

    leakage_c = leakage(geometry, charge, mask)

    if plot:
        _, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)
        CameraDisplay(geometry, charge, ax=ax1).add_colorbar()
        CameraDisplay(camera_biggest, charge_biggest, ax=ax2).add_colorbar()
        plt.show()

    moments = hillas_parameters(camera_biggest, charge_biggest)
    if cut:
        if cutflow.cut(CFO_CLOSE_EDGE, moments, camera.camera_name):
            return
        if cutflow.cut(CFO_BAD_ELLIP, moments):
            return

    if cutflow.cut(CFO_POOR_MOMENTS, moments):
        return

    timing_c = timing_parameters(geometry, charge, peak, moments, mask)
    time_gradient = timing_c.slope.value if geometry.camera_name != 'ASTRICam' else moments.skewness
    return moments, leakage_c, timing_c, time_gradient, n_islands
Пример #11
0
    def plot(self, event, telid):
        chan = 0
        image = event.dl1.tel[telid].image[chan]
        peakpos = event.dl1.tel[telid].peakpos[chan]

        if self._current_tel != telid:
            self._current_tel = telid

            self.ax_intensity.cla()
            self.ax_peakpos.cla()

            # Redraw camera
            geom = self.get_geometry(event, telid)
            self.c_intensity = CameraDisplay(geom, ax=self.ax_intensity)
            self.c_peakpos = CameraDisplay(geom, ax=self.ax_peakpos)

            tmaxmin = event.dl0.tel[telid].waveform.shape[2]
            t_chargemax = peakpos[image.argmax()]
            cmap_time = colors.LinearSegmentedColormap.from_list(
                'cmap_t',
                [(0 / tmaxmin, 'darkgreen'),
                 (0.6 * t_chargemax / tmaxmin, 'green'),
                 (t_chargemax / tmaxmin, 'yellow'),
                 (1.4 * t_chargemax / tmaxmin, 'blue'), (1, 'darkblue')]
            )
            self.c_peakpos.pixels.set_cmap(cmap_time)

            if not self.cb_intensity:
                self.c_intensity.add_colorbar(
                    ax=self.ax_intensity, label='Intensity (p.e.)'
                )
                self.cb_intensity = self.c_intensity.colorbar
            else:
                self.c_intensity.colorbar = self.cb_intensity
                self.c_intensity.update(True)
            if not self.cb_peakpos:
                self.c_peakpos.add_colorbar(
                    ax=self.ax_peakpos, label='Peakpos (ns)'
                )
                self.cb_peakpos = self.c_peakpos.colorbar
            else:
                self.c_peakpos.colorbar = self.cb_peakpos
                self.c_peakpos.update(True)

        self.c_intensity.image = image
        if peakpos is not None:
            self.c_peakpos.image = peakpos

        self.fig.suptitle(
            "Event_index={}  Event_id={}  Telescope={}"
            .format(event.count, event.r0.event_id, telid)
        )

        if self.display:
            plt.pause(0.001)
        if self.pdf is not None:
            self.pdf.savefig(self.fig)
Пример #12
0
    def plot(self, event, telid):
        image = event.dl1.tel[telid].image
        peak_time = event.dl1.tel[telid].peak_time
        print("plot", image.shape, peak_time.shape)

        if self._current_tel != telid:
            self._current_tel = telid

            self.ax_intensity.cla()
            self.ax_peak_time.cla()

            # Redraw camera
            geom = self.subarray.tel[telid].camera.geometry
            self.c_intensity = CameraDisplay(geom, ax=self.ax_intensity)
            self.c_peak_time = CameraDisplay(geom, ax=self.ax_peak_time)

            if (peak_time != 0.0).all():
                tmaxmin = event.dl0.tel[telid].waveform.shape[1]
                t_chargemax = peak_time[image.argmax()]
                cmap_time = colors.LinearSegmentedColormap.from_list(
                    "cmap_t",
                    [
                        (0 / tmaxmin, "darkgreen"),
                        (0.6 * t_chargemax / tmaxmin, "green"),
                        (t_chargemax / tmaxmin, "yellow"),
                        (1.4 * t_chargemax / tmaxmin, "blue"),
                        (1, "darkblue"),
                    ],
                )
                self.c_peak_time.pixels.set_cmap(cmap_time)

            if not self.cb_intensity:
                self.c_intensity.add_colorbar(ax=self.ax_intensity,
                                              label="Intensity (p.e.)")
                self.cb_intensity = self.c_intensity.colorbar
            else:
                self.c_intensity.colorbar = self.cb_intensity
                self.c_intensity.update(True)
            if not self.cb_peak_time:
                self.c_peak_time.add_colorbar(ax=self.ax_peak_time,
                                              label="Pulse Time (ns)")
                self.cb_peak_time = self.c_peak_time.colorbar
            else:
                self.c_peak_time.colorbar = self.cb_peak_time
                self.c_peak_time.update(True)

        self.c_intensity.image = image
        if peak_time is not None:
            self.c_peak_time.image = peak_time

        self.fig.suptitle("Event_index={}  Event_id={}  Telescope={}".format(
            event.count, event.index.event_id, telid))

        if self.display:
            plt.pause(0.001)
        if self.pdf is not None:
            self.pdf.savefig(self.fig)
Пример #13
0
    def plot(self, event, telid):
        chan = 0
        image = event.dl1.tel[telid].image[chan]
        pulse_time = event.dl1.tel[telid].pulse_time[chan]

        if self._current_tel != telid:
            self._current_tel = telid

            self.ax_intensity.cla()
            self.ax_pulse_time.cla()

            # Redraw camera
            geom = self.get_geometry(event, telid)
            self.c_intensity = CameraDisplay(geom, ax=self.ax_intensity)
            self.c_pulse_time = CameraDisplay(geom, ax=self.ax_pulse_time)

            tmaxmin = event.dl0.tel[telid].waveform.shape[2]
            t_chargemax = pulse_time[image.argmax()]
            cmap_time = colors.LinearSegmentedColormap.from_list(
                'cmap_t',
                [(0 / tmaxmin, 'darkgreen'),
                 (0.6 * t_chargemax / tmaxmin, 'green'),
                 (t_chargemax / tmaxmin, 'yellow'),
                 (1.4 * t_chargemax / tmaxmin, 'blue'), (1, 'darkblue')]
            )
            self.c_pulse_time.pixels.set_cmap(cmap_time)

            if not self.cb_intensity:
                self.c_intensity.add_colorbar(
                    ax=self.ax_intensity, label='Intensity (p.e.)'
                )
                self.cb_intensity = self.c_intensity.colorbar
            else:
                self.c_intensity.colorbar = self.cb_intensity
                self.c_intensity.update(True)
            if not self.cb_pulse_time:
                self.c_pulse_time.add_colorbar(
                    ax=self.ax_pulse_time, label='Pulse Time (ns)'
                )
                self.cb_pulse_time = self.c_pulse_time.colorbar
            else:
                self.c_pulse_time.colorbar = self.cb_pulse_time
                self.c_pulse_time.update(True)

        self.c_intensity.image = image
        if pulse_time is not None:
            self.c_pulse_time.image = pulse_time

        self.fig.suptitle(
            "Event_index={}  Event_id={}  Telescope={}"
                .format(event.count, event.r0.event_id, telid)
        )

        if self.display:
            plt.pause(0.001)
        if self.pdf is not None:
            self.pdf.savefig(self.fig)
Пример #14
0
def plot_cam(geom, geom2d, geom1d, image, image2d, image1d):
    # plt.viridis()
    plt.figure(figsize=(12, 4))
    ax = plt.subplot(1, 3, 1)
    CameraDisplay(geom, image=image).add_colorbar()
    plt.subplot(1, 3, 2, sharex=ax, sharey=ax)
    CameraDisplay(geom2d, image=image2d).add_colorbar()
    plt.subplot(1, 3, 3, sharex=ax, sharey=ax)
    CameraDisplay(geom1d, image=image1d).add_colorbar()
Пример #15
0
    def _display_camera_animation(self):
        #plt.style.use("ggplot")
        fig = plt.figure(num="ctapipe Camera Demo", figsize=(7, 7))
        ax = plt.subplot(111)

        # load the camera
        geom = CameraGeometry.from_name(self.camera)
        disp = CameraDisplay(geom, ax=ax, autoupdate=True, )
        disp.cmap = plt.cm.terrain

        def update(frame):

            centroid = np.random.uniform(-0.5, 0.5, size=2)
            width = np.random.uniform(0, 0.01)
            length = np.random.uniform(0, 0.03) + width
            angle = np.random.uniform(0, 360)
            intens = np.random.exponential(2) * 50
            model = toymodel.generate_2d_shower_model(centroid=centroid,
                                                      width=width,
                                                      length=length,
                                                      psi=angle * u.deg)
            image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
                                                                 intensity=intens,
                                                                 nsb_level_pe=5000)

            # alternate between cleaned and raw images
            if self._counter == self.cleanframes:
                plt.suptitle("Image Cleaning ON")
                self.imclean = True
            if self._counter == self.cleanframes*2:
                plt.suptitle("Image Cleaning OFF")
                self.imclean = False
                self._counter = 0

            if self.imclean:
                cleanmask = tailcuts_clean(geom, image/80.0)
                for ii in range(3):
                    dilate(geom, cleanmask)
                image[cleanmask == 0] = 0  # zero noise pixels

            self.log.debug("count = {}, image sum={} max={}"
                .format(self._counter, image.sum(), image.max()))
            disp.image = image

            if self.autoscale:
                disp.set_limits_percent(95)
            else:
                disp.set_limits_minmax(-100, 4000)

            disp.axes.figure.canvas.draw()
            self._counter += 1
            return [ax,]

        self.anim = FuncAnimation(fig, update, interval=self.delay,
                                  blit=self.blit)
        plt.show()
Пример #16
0
    def create(self, df, geom):
        super().save()

        camera = CameraDisplay(geom, ax=self.ax,
                               image=np.ma.zeros(2048),
                               cmap='viridis')
        camera.add_colorbar(pad=-0.2)
        camera.colorbar.set_label("Peak Time (ns)", fontsize=20)

        with PdfPages(self.output_path) as pdf:
            n_rows = len(df.index)
            desc = "Saving image pages"
            for index, row in tqdm(df.iterrows(), total=n_rows, desc=desc):
                event_id = row['id']
                tel = row['tel']
                image = row['peak_time']
                tc = row['tc']
                hillas = row['hillas']

                cleaned_image = np.ma.masked_array(image, mask=~tc)
                cleaned_image.fill_value = 0
                max_ = np.percentile(cleaned_image.compressed(), 99)
                min_ = np.percentile(cleaned_image.compressed(), 1)

                camera.image = cleaned_image
                camera.set_limits_minmax(min_, max_)
                camera.highlight_pixels(np.arange(2048), 'black', 1, 0.2)
                # camera.overlay_moments_update(hillas, color='red')
                self.ax.set_title("Event: {}, Tel: {}".format(event_id, tel))
                self.ax.axis('off')
                camera.colorbar.ax.tick_params(labelsize=30)

                pdf.savefig(self.fig)
Пример #17
0
def display_event(event):
    """an extremely inefficient display. It creates new instances of
    CameraDisplay for every event and every camera, and also new axes
    for each event. It's hacked, but it works
    """
    print("Displaying... please wait (this is an inefficient implementation)")
    global fig
    ntels = len(event.r0.tels_with_data)
    fig.clear()

    plt.suptitle("EVENT {}".format(event.r0.event_id))

    disps = []

    for ii, tel_id in enumerate(event.r0.tels_with_data):
        print("\t draw cam {}...".format(tel_id))
        nn = int(ceil(sqrt(ntels)))
        ax = plt.subplot(nn, nn, ii + 1)

        geom = event.inst.subarray.tel[tel_id].camera
        disp = CameraDisplay(geom, ax=ax, title="CT{0}".format(tel_id))
        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.cmap = random.choice(cmaps)
        chan = 0
        signals = event.r0.tel[tel_id].adc_sums[chan].astype(float)
        signals -= signals.mean()
        disp.image = signals
        disp.set_limits_percent(95)
        disp.add_colorbar()
        disps.append(disp)

    return disps
Пример #18
0
def test_hillas_overlay():
    from ctapipe.visualization import CameraDisplay

    disp = CameraDisplay(CameraGeometry.from_name("LSTCam"))
    hillas = CameraHillasParametersContainer(x=0.1 * u.m,
                                             y=-0.1 * u.m,
                                             length=0.5 * u.m,
                                             width=0.2 * u.m,
                                             psi=90 * u.deg)

    disp.overlay_moments(hillas)
Пример #19
0
    def create(self, df, geom):

        count = np.stack(df['tc']).sum(0)
        camera = CameraDisplay(geom, ax=self.ax,
                               image=count,
                               cmap='viridis')
        camera.add_colorbar()
        camera.colorbar.set_label("Count")

        self.ax.set_title("Pixel Hits after Tailcuts For Run")
        self.ax.axis('off')
Пример #20
0
    def create(self, image, coords, title):
        camera = CameraDisplay(coords.geom, ax=self.ax,
                               image=image,
                               cmap='viridis')
        camera.add_colorbar()
        camera.colorbar.set_label("Residual RMS (p.e.)", fontsize=20)
        camera.image = image
        camera.colorbar.ax.tick_params(labelsize=30)

        self.fig.suptitle("Jupiter RMS ON-OFF")
        self.ax.set_title(title)
        self.ax.axis('off')
Пример #21
0
    def plot(self, df, n_frames, geom, output_path, title):
        camera = CameraDisplay(geom,
                               ax=self.ax_camera,
                               image=np.zeros(2048),
                               cmap='viridis')
        camera.add_colorbar()
        camera.colorbar.set_label("Amplitude (p.e.)")
        self.fig.suptitle(title + " - " + self.description)

        # Create animation
        interval = 25  # Fast

        # interval = 100  # Slow

        def animation_generator():
            for index, row in df.iterrows():
                event_id = row['event_id']
                images = row['images']
                tc = row['tc']

                # max_ = np.percentile(event.max(), 60)
                # camera.image = image
                # camera.set_limits_minmax(min_, max_)

                tc_2d = np.ones(images.shape, dtype=np.bool) * tc[None, :]
                cleaned_events = np.ma.masked_array(images, mask=~tc_2d)
                max_ = cleaned_events.max()  # np.percentile(dl1, 99.9)
                if max_ < 6:
                    max_ = 6
                min_ = np.percentile(images, 0.1)

                camera.set_limits_minmax(min_, max_)
                self.ax_camera.set_title("Event: {}".format(event_id))
                for s in images:
                    camera.image = s
                    yield

        source = animation_generator()

        self.log.info("Output: {}".format(output_path))
        with tqdm(total=n_frames, desc="Creating animation") as pbar:

            def animate(_):
                pbar.update(1)
                next(source)

            anim = animation.FuncAnimation(self.fig,
                                           animate,
                                           frames=n_frames - 1,
                                           interval=interval)
            anim.save(output_path)

        self.log.info("Created animation: {}".format(output_path))
Пример #22
0
    def create(self, image, label, title):
        camera = CameraDisplay(get_geometry(),
                               ax=self.ax,
                               image=image,
                               cmap='viridis')
        camera.add_colorbar()
        camera.colorbar.set_label(label, fontsize=20)
        camera.image = image
        camera.colorbar.ax.tick_params(labelsize=30)

        # self.ax.set_title(title)
        self.ax.axis('off')
Пример #23
0
    def plot(self, event, telid):
        image = event.dl1.tel[telid].image
        peak_time = event.dl1.tel[telid].peak_time

        if self._current_tel != telid:
            self._current_tel = telid

            self.ax_intensity.cla()
            self.ax_peak_time.cla()

            # Redraw camera
            geom = self.subarray.tel[telid].camera.geometry
            self.c_intensity = CameraDisplay(geom, ax=self.ax_intensity)

            time_cmap = copy(plt.get_cmap("RdBu_r"))
            time_cmap.set_under("gray")
            time_cmap.set_over("gray")
            self.c_peak_time = CameraDisplay(geom,
                                             ax=self.ax_peak_time,
                                             cmap=time_cmap)

            if not self.cb_intensity:
                self.c_intensity.add_colorbar(ax=self.ax_intensity,
                                              label="Intensity (p.e.)")
                self.cb_intensity = self.c_intensity.colorbar
            else:
                self.c_intensity.colorbar = self.cb_intensity
                self.c_intensity.update(True)
            if not self.cb_peak_time:
                self.c_peak_time.add_colorbar(ax=self.ax_peak_time,
                                              label="Pulse Time (ns)")
                self.cb_peak_time = self.c_peak_time.colorbar
            else:
                self.c_peak_time.colorbar = self.cb_peak_time
                self.c_peak_time.update(True)

        self.c_intensity.image = image
        self.c_peak_time.image = peak_time

        # center around brightes pixel, show 10ns total
        t_chargemax = peak_time[image.argmax()]
        self.c_peak_time.set_limits_minmax(t_chargemax - 5, t_chargemax + 5)

        self.fig.suptitle("Event_index={}  Event_id={}  Telescope={}".format(
            event.count, event.index.event_id, telid))

        if self.display:
            plt.pause(0.001)

        if self.pdf is not None:
            self.pdf.savefig(self.fig)
Пример #24
0
def display_dl1_event(event, camera_geometry, tel_id=1, axes=None, **kwargs):
    """
    Display a DL1 event (image and pulse time map) side by side

    Parameters
    ----------
    event: ctapipe event
    tel_id: int
    axes: list of `matplotlib.pyplot.axes` of shape (2,) or None
    kwargs: kwargs for `ctapipe.visualization.CameraDisplay`

    Returns
    -------
    axes: `matplotlib.pyplot.axes`
    """

    if axes is None:
        fig, axes = plt.subplots(1, 2, figsize=(12, 5))

    image = event.dl1.tel[tel_id].image
    peak_time = event.dl1.tel[tel_id].peak_time

    if image is None or peak_time is None:
        raise Exception(
            f"There is no calibrated image or pulse time map for telescope {tel_id}"
        )

    d1 = CameraDisplay(camera_geometry, image, ax=axes[0], **kwargs)
    d1.add_colorbar(ax=axes[0])
    d2 = CameraDisplay(camera_geometry, peak_time, ax=axes[1], **kwargs)
    d2.add_colorbar(ax=axes[1])

    return axes
Пример #25
0
def display_event(event, geoms):
    """an extremely inefficient display. It creates new instances of
    CameraDisplay for every event and every camera, and also new axes
    for each event. It's hacked, but it works
    """
    print("Displaying... please wait (this is an inefficient implementation)")
    global fig
    ntels = len(event.r0.tels_with_data)
    fig.clear()

    plt.suptitle("EVENT {}".format(event.r0.event_id))

    disps = []

    for ii, tel_id in enumerate(event.r0.tels_with_data):
        print("\t draw cam {}...".format(tel_id))
        nn = int(ceil(sqrt(ntels)))
        ax = plt.subplot(nn, nn, ii + 1)

        x, y = event.inst.pixel_pos[tel_id]
        geom = geoms[tel_id]
        disp = CameraDisplay(geom, ax=ax, title="CT{0}".format(tel_id))
        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.cmap = 'afmhot'
        chan = 0
        signals = event.r0.tel[tel_id].adc_sums[chan].astype(float)
        signals -= signals.mean()
        disp.image = signals
        disp.set_limits_percent(95)
        disp.add_colorbar()
        disps.append(disp)

    return disps
Пример #26
0
def draw_several_cams(geom, ncams=4):

    cmaps = ["jet", "afmhot", "terrain", "autumn"]
    fig, axs = plt.subplots(
        1,
        ncams,
        figsize=(15, 4),
    )

    for ii in range(ncams):
        disp = CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.Gaussian(
            x=(0.2 - ii * 0.1) * u.m,
            y=(-ii * 0.05) * u.m,
            width=(0.05 + 0.001 * ii) * u.m,
            length=(0.15 + 0.05 * ii) * u.m,
            psi=ii * 20 * u.deg,
        )

        image, _, _ = model.generate_image(
            geom,
            intensity=1500,
            nsb_level_pe=5,
        )

        mask = tailcuts_clean(
            geom,
            image,
            picture_thresh=6 * image.mean(),
            boundary_thresh=4 * image.mean(),
        )
        cleaned = image.copy()
        cleaned[~mask] = 0

        hillas = hillas_parameters(geom, cleaned)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])

        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color="blue")
    def remove_star_and_run(self, list_of_file, max_events,
                            noise_pixels_id_list):
        signal_place_after_clean = np.zeros(1855)
        sum_ped_ev = 0
        alive_ped_ev = 0

        for input_file in list_of_file:
            print(input_file)

            r0_r1_calibrator = LSTR0Corrections(pedestal_path=None,
                                                r1_sample_start=3,
                                                r1_sample_end=39)
            reader = LSTEventSource(input_url=input_file,
                                    max_events=max_events)
            for i, ev in enumerate(reader):
                r0_r1_calibrator.calibrate(ev)
                if i % 10000 == 0:
                    print(ev.r0.event_id)

                if ev.lst.tel[1].evt.tib_masked_trigger == 32:
                    sum_ped_ev += 1
                    self.r1_dl1_calibrator(ev)

                    img = ev.dl1.tel[1].image
                    img[noise_pixels_id_list] = 0

                    geom = ev.inst.subarray.tel[1].camera
                    clean = tailcuts_clean(geom, img,
                                           **self.cleaning_parameters)

                    cleaned = img.copy()
                    cleaned[~clean] = 0.0

                    signal_place_after_clean[np.where(clean == True)] += 1

                    if np.sum(cleaned > 0) > 0:
                        alive_ped_ev += 1

        fig, ax = plt.subplots(figsize=(10, 8))
        geom = ev.inst.subarray.tel[1].camera

        disp0 = CameraDisplay(geom, ax=ax)
        disp0.image = signal_place_after_clean / sum_ped_ev
        disp0.highlight_pixels(noise_pixels_id_list, linewidth=3)
        disp0.add_colorbar(ax=ax,
                           label="N times signal remain after cleaning [%]")
        disp0.cmap = 'gnuplot2'
        ax.set_title("{} \n {}/{}".format(
            input_file.split("/")[-1][8:21], alive_ped_ev, sum_ped_ev),
                     fontsize=25)

        print("{}/{}".format(alive_ped_ev, sum_ped_ev))

        ax.set_xlabel(" ")
        ax.set_ylabel(" ")
        plt.tight_layout()
        plt.show()
Пример #28
0
def test_pixel_shapes(pix_type):
    """ test CameraDisplay functionality """
    from ..mpl_camera import CameraDisplay

    geom = CameraGeometry.from_name("LSTCam")
    geom.pix_type = pix_type

    disp = CameraDisplay(geom)
    image = np.random.normal(size=len(geom.pix_x))
    disp.image = image
    disp.add_colorbar()
    disp.highlight_pixels([1, 2, 3, 4, 5])
    disp.add_ellipse(centroid=(0, 0), width=0.1, length=0.1, angle=0.1)
Пример #29
0
def plot_array_camera(data, label='', limits=None, **kwargs):
    mask = np.isfinite(data)

    if limits is not None:

        mask *= (data >= limits[0]) * (data <= limits[1])
    data[~mask] = 0

    fig = plt.figure()
    cam = DigiCam
    geom = cam.geometry
    cam_display = CameraDisplay(geom, **kwargs)
    cam_display.cmap.set_bad(color='k')
    cam_display.image = data
    cam_display.axes.set_title('')
    cam_display.axes.set_xticks([])
    cam_display.axes.set_yticks([])
    cam_display.axes.set_xlabel('')
    cam_display.axes.set_ylabel('')

    cam_display.axes.axis('off')
    cam_display.add_colorbar(label=label)
    cam_display.axes.get_figure().set_size_inches((10, 10))
    plt.axis('equal')
    if limits is not None:

        if not isinstance(limits, tuple):
            raise TypeError('Limits must be a tuple()')

        cam_display.colorbar.set_clim(vmin=limits[0], vmax=limits[1])

    cam_display.update()

    return cam_display, fig
Пример #30
0
def draw_several_cams(geom, ncams=4):

    cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
    fig, axs = plt.subplots(
        1, ncams, figsize=(15, 4), sharey=True, sharex=True
    )

    for ii in range(ncams):
        disp = CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.generate_2d_shower_model(
            centroid=(0.2 - ii * 0.1, -ii * 0.05),
            width=0.005 + 0.001 * ii,
            length=0.1 + 0.05 * ii,
            psi=ii * 20 * u.deg,
        )

        image, sig, bg = toymodel.make_toymodel_shower_image(
            geom,
            model.pdf,
            intensity=50,
            nsb_level_pe=1000,
        )

        mask = tailcuts_clean(
            geom,
            image,
            picture_thresh=6 * image.mean(),
            boundary_thresh=4 * image.mean()
        )
        cleaned = image.copy()
        cleaned[~mask] = 0

        hillas = hillas_parameters(geom, cleaned)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])

        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color='blue')
Пример #31
0
def test_overlay_disp_vector():
    from ctapipe.image import hillas_parameters

    geom = CameraGeometry.from_name('LSTCam')
    image = np.random.rand(geom.n_pixels)
    display = CameraDisplay(geom, image)
    hillas = hillas_parameters(geom, image)
    disp = disp_parameters_event(hillas, 0.1 * u.m, 0.3 * u.m)
    overlay_disp_vector(display, disp, hillas)
Пример #32
0
def main():
    fig, axs = plt.subplots(1, 2, constrained_layout=True, figsize=(6, 3))

    model = Gaussian(0 * u.m, 0.1 * u.m, 0.3 * u.m, 0.05 * u.m, 25 * u.deg)
    cam = CameraGeometry.from_name('FlashCam')
    image, *_ = model.generate_image(cam, 2500)

    CameraDisplay(cam, ax=axs[0], image=image)
    CameraDisplay(
        cam.transform_to(EngineeringCameraFrame()),
        ax=axs[1],
        image=image,
    )

    axs[0].set_title('CameraFrame')
    axs[1].set_title('EngineeringCameraFrame')

    plt.show()
Пример #33
0
def plot_quick_camera(image, ax=None):
    ax = ax if ax is not None else plt.gca()

    cameraconfig = Config()
    pos = cameraconfig.pixel_pos * u.m
    foclen = cameraconfig.optical_foclen * u.m
    geom = CameraGeometry.guess(*pos, foclen)
    camera = CameraDisplay(geom, ax=ax, image=image, cmap='viridis')
    return camera
Пример #34
0
def plot_nevent(events, nevent, filename, bad_pixels=None, norm="lin"):
    displays = []
    fig, axes = plt.subplots(
        3,
        4,  # sharex='all', sharey='all',
        figsize=[18, 12])
    axes = axes.flatten()
    for index, event in enumerate(events):
        if index < nevent:
            axe = index % 12
            figure = int(np.floor(index / 12))
            if index < 12:
                displays.append(
                    CameraDisplay(DigiCam.geometry,
                                  ax=axes[index],
                                  norm=norm,
                                  title=''))
                displays[axe].cmap.set_bad('w')
                displays[axe].cmap.set_over('w')
                displays[axe].cmap.set_under('w')
                displays[axe].add_colorbar(ax=axes[axe])
                axes[axe].set_xlabel("")
                axes[axe].set_ylabel("")
                axes[axe].set_xlim([-400, 400])
                axes[axe].set_ylim([-400, 400])
                axes[axe].set_xticklabels([])
                axes[axe].set_yticklabels([])
            pe = event.data.reconstructed_number_of_pe
            n_pix = len(pe)
            mask = event.data.cleaning_mask
            pe_masked = pe
            pe_masked[~mask] = np.NaN
            displays[axe].set_limits_minmax(0, np.nanmax(pe_masked))
            displays[axe].image = pe_masked
            # highlight only bad pixels which pass the tail-cut cleaning
            highlighted_mask = np.zeros(n_pix, dtype=bool)
            highlighted_mask[bad_pixels] = mask[bad_pixels]
            highlighted = np.arange(n_pix)[highlighted_mask]
            displays[axe].highlight_pixels(highlighted, color='k', linewidth=2)
            displays[axe].overlay_moments(event.hillas,
                                          with_label=False,
                                          edgecolor='r',
                                          linewidth=2)
            if index % 12 == 11 or index == nevent - 1:
                if filename.lower == "show":
                    plt.show()
                else:
                    if figure == 0:
                        output = filename
                    else:
                        output = filename.replace('.png',
                                                  '_' + str(figure) + '.png')
                    plt.savefig(output)
                    print(output, 'created.')
        yield event
    plt.close(fig)
Пример #35
0
def draw_several_cams(geom, ncams=4):

    cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
    fig, axs = plt.subplots(
        1, ncams, figsize=(15, 4),
    )

    for ii in range(ncams):
        disp = CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.generate_2d_shower_model(
            centroid=(0.2 - ii * 0.1, -ii * 0.05),
            width=0.05 + 0.001 * ii,
            length=0.15 + 0.05 * ii,
            psi=ii * 20 * u.deg,
        )

        image, sig, bg = toymodel.make_toymodel_shower_image(
            geom,
            model.pdf,
            intensity=1500,
            nsb_level_pe=5,
        )

        mask = tailcuts_clean(
            geom,
            image,
            picture_thresh=6 * image.mean(),
            boundary_thresh=4 * image.mean()
        )
        cleaned = image.copy()
        cleaned[~mask] = 0

        hillas = hillas_parameters(geom, cleaned)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])

        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color='blue')
Пример #36
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for data in hessio_event_source(self.infile,
                                        allowed_tels=self._selected_tels,
                                        max_events=self.max_events):

            self.calibrator.calibrate(data)

            if geom is None:
                x, y = data.inst.pixel_pos[self._base_tel]
                flen = data.inst.optical_foclen[self._base_tel]
                geom = CameraGeometry.guess(x, y, flen)
                imsum = np.zeros(shape=x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(data.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in data.dl0.tels_with_data:
                imsum += data.dl1.tel[telid].image[0]

            self.log.info("event={} ntels={} energy={}" \
                          .format(data.r0.event_id,
                                  len(data.dl0.tels_with_data),
                                  data.mc.energy))
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(data.r0.event_id,
                                              self.output_suffix)
                self.log.info("saving: '{}'".format(filename))
                plt.savefig(filename)
Пример #37
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for event in self.reader:

            self.calibrator(event)

            if geom is None:
                geom = event.inst.subarray.tel[self._base_tel].camera
                imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(event.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in event.dl0.tels_with_data:
                imsum += event.dl1.tel[telid].image[0]

            self.log.info(
                "event={} ntels={} energy={}".format(
                    event.r0.event_id, len(event.dl0.tels_with_data),
                    event.mc.energy
                )
            )
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(
                    event.r0.event_id, self.output_suffix
                )
                self.log.info(f"saving: '{filename}'")
                plt.savefig(filename)
    def __init__(self, waveform_data, geometry,
                 camera_axis, waveform_axis_list, waveform_axis_ylabel):
        self.__waveform_data = None
        self.__waveform_axis_list = None
        self.__integration_window = None

        self.camera_axis = camera_axis
        self.waveform_axis_list = []
        self.waveform_title_list = []
        self.waveform_window_list = []
        self.waveforms = []
        self.pixel_switch_num = 0

        self.colors = itertools.cycle(['r', 'b', 'c', 'm', 'y', 'k', 'w', 'g'])
        self.current_color = 'r'

        self.active_pixels = []
        self.active_pixel_patches = []
        self.active_pixel_labels = []

        self.window_start = None
        self.window_end = None


        CameraDisplay.__init__(self, geometry, ax=camera_axis)
        self._active_pixel.set_linewidth(1.5)

        self.geom = geometry
        self.waveform_yaxis_label = waveform_axis_ylabel
        self.waveform_data = waveform_data
        self.waveform_axis_list = waveform_axis_list

        geometry_text = "Geometry = {}".format(geometry.cam_id)
        self.camera_axis.text(0.01, 0.99, geometry_text,
                              horizontalalignment='left',
                              verticalalignment='top',
                              transform=self.camera_axis.transAxes)
Пример #39
0
    def plot(self, input_file, event, telid, chan, extractor_name, nei):
        # Extract required images
        dl0 = event.dl0.tel[telid].adc_samples[chan]
        t_pe = event.mc.tel[telid].photo_electron_image
        dl1 = event.dl1.tel[telid].image[chan]
        max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
        max_charges = np.max(dl0, axis=1)
        max_pix = int(np.argmax(max_charges))
        min_pix = int(np.argmin(max_charges))

        geom = CameraGeometry.guess(*event.inst.pixel_pos[telid],
                                    event.inst.optical_foclen[telid])

        # Get Neighbours
        max_pixel_nei = nei[max_pix]
        min_pixel_nei = nei[min_pix]

        # Get Windows
        windows = event.dl1.tel[telid].extracted_samples[chan]
        length = np.sum(windows, axis=1)
        start = np.argmax(windows, axis=1)
        end = start + length

        # Draw figures
        ax_max_nei = {}
        ax_min_nei = {}
        fig_waveforms = plt.figure(figsize=(18, 9))
        fig_waveforms.subplots_adjust(hspace=.5)
        fig_camera = plt.figure(figsize=(15, 12))

        ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
        ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
        ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
        ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
        ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
        ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
        ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
        ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

        ax_img_nei = fig_camera.add_subplot(2, 2, 1)
        ax_img_max = fig_camera.add_subplot(2, 2, 2)
        ax_img_true = fig_camera.add_subplot(2, 2, 3)
        ax_img_cal = fig_camera.add_subplot(2, 2, 4)

        # Draw max pixel traces
        ax_max_pix.plot(dl0[max_pix])
        ax_max_pix.set_xlabel("Time (ns)")
        ax_max_pix.set_ylabel("DL0 Samples (ADC)")
        ax_max_pix.set_title("(Max) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(max_pix, t_pe[max_pix], dl1[max_pix]))
        max_ylim = ax_max_pix.get_ylim()
        ax_max_pix.plot([start[max_pix], start[max_pix]],
                        ax_max_pix.get_ylim(), color='r', alpha=1)
        ax_max_pix.plot([end[max_pix], end[max_pix]],
                        ax_max_pix.get_ylim(), color='r', alpha=1)
        for i, ax in ax_max_nei.items():
            if len(max_pixel_nei) > i:
                pix = max_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title("(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(), color='r', alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(), color='r', alpha=1)

        # Draw min pixel traces
        ax_min_pix.plot(dl0[min_pix])
        ax_min_pix.set_xlabel("Time (ns)")
        ax_min_pix.set_ylabel("DL0 Samples (ADC)")
        ax_min_pix.set_title("(Min) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(min_pix, t_pe[min_pix], dl1[min_pix]))
        ax_min_pix.set_ylim(max_ylim)
        ax_min_pix.plot([start[min_pix], start[min_pix]],
                        ax_min_pix.get_ylim(), color='r', alpha=1)
        ax_min_pix.plot([end[min_pix], end[min_pix]],
                        ax_min_pix.get_ylim(), color='r', alpha=1)
        for i, ax in ax_min_nei.items():
            if len(min_pixel_nei) > i:
                pix = min_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title("(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(), color='r', alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(), color='r', alpha=1)

        # Draw cameras
        nei_camera = np.zeros_like(max_charges, dtype=np.int)
        nei_camera[min_pixel_nei] = 2
        nei_camera[min_pix] = 1
        nei_camera[max_pixel_nei] = 3
        nei_camera[max_pix] = 4
        camera = CameraDisplay(geom, ax=ax_img_nei)
        camera.image = nei_camera
        camera.cmap = plt.cm.viridis
        ax_img_nei.set_title("Neighbour Map")
        ax_img_nei.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_nei.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        camera = CameraDisplay(geom, ax=ax_img_max)
        camera.image = dl0[:, max_time]
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
        ax_img_max.set_title("Max Timeslice (T = {})".format(max_time))
        ax_img_max.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_max.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_true)
        camera.image = t_pe
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
        ax_img_true.set_title("True Charge")
        ax_img_true.annotate("Pixel: {}".format(max_pix),
                             xy=(geom.pix_x.value[max_pix],
                                 geom.pix_y.value[max_pix]),
                             xycoords='data', xytext=(0.05, 0.98),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='red', width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')
        ax_img_true.annotate("Pixel: {}".format(min_pix),
                             xy=(geom.pix_x.value[min_pix],
                                 geom.pix_y.value[min_pix]),
                             xycoords='data', xytext=(0.05, 0.94),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='orange', width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_cal)
        camera.image = dl1
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_cal,
                            label="Calib Charge (Photo-electrons)")
        ax_img_cal.set_title("Charge (integrator={})".format(extractor_name))
        ax_img_cal.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_cal.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        fig_waveforms.suptitle("Integrator = {}".format(extractor_name))
        fig_camera.suptitle("Camera = {}".format(geom.cam_id))

        waveform_output_name = "e{}_t{}_c{}_extractor{}_waveform.pdf"\
            .format(event.count, telid, chan, extractor_name)
        camera_output_name = "e{}_t{}_c{}_extractor{}_camera.pdf"\
            .format(event.count, telid, chan, extractor_name)

        output_dir = self.output_dir
        if output_dir is None:
            output_dir = input_file.output_directory
        output_dir = os.path.join(output_dir, self.name)
        if not os.path.exists(output_dir):
            self.log.info("Creating directory: {}".format(output_dir))
            os.makedirs(output_dir)

        waveform_output_path = os.path.join(output_dir, waveform_output_name)
        self.log.info("Saving: {}".format(waveform_output_path))
        fig_waveforms.savefig(waveform_output_path, format='pdf',
                              bbox_inches='tight')

        camera_output_path = os.path.join(output_dir, camera_output_name)
        self.log.info("Saving: {}".format(camera_output_path))
        fig_camera.savefig(camera_output_path, format='pdf',
                           bbox_inches='tight')
Пример #40
0
def test_convert_geometry():
    filename = get_path("gamma_test.simtel.gz")

    cam_geom = {}

    source = hessio_event_source(filename)

    # testing a few images just for the sake of being thorough
    counter = 5

    for event in source:

        for tel_id in event.dl0.tels_with_data:
            if tel_id not in cam_geom:
                cam_geom[tel_id] = CameraGeometry.guess(
                                        event.inst.pixel_pos[tel_id][0],
                                        event.inst.pixel_pos[tel_id][1],
                                        event.inst.optical_foclen[tel_id])


            # we want to test conversion of hex to rectangular pixel grid
            if cam_geom[tel_id].pix_type is not "hexagonal":
                continue

            print(tel_id, cam_geom[tel_id].pix_type)

            pmt_signal = apply_mc_calibration(
                        #event.dl0.tel[tel_id].adc_samples[0],
                        event.dl0.tel[tel_id].adc_sums[0],
                        event.mc.tel[tel_id].dc_to_pe[0],
                        event.mc.tel[tel_id].pedestal[0])

            new_geom, new_signal = convert_geometry_1d_to_2d(
                cam_geom[tel_id], pmt_signal, cam_geom[tel_id].cam_id, add_rot=-2)

            unrot_geom, unrot_signal = convert_geometry_back(
                new_geom, new_signal, cam_geom[tel_id].cam_id,
                event.inst.optical_foclen[tel_id], add_rot=4)

            # if run as main, do some plotting
            if __name__ == "__main__":
                fig = plt.figure()
                plt.style.use('seaborn-talk')

                ax1 = fig.add_subplot(131)
                disp1 = CameraDisplay(cam_geom[tel_id],
                                      image=np.sum(pmt_signal, axis=1)
                                      if pmt_signal.shape[-1] == 25 else pmt_signal,
                                      ax=ax1)
                disp1.cmap = plt.cm.hot
                disp1.add_colorbar()
                plt.title("original geometry")

                ax2 = fig.add_subplot(132)
                disp2 = CameraDisplay(new_geom,
                                      image=np.sum(new_signal, axis=2)
                                      if new_signal.shape[-1] == 25 else new_signal,
                                      ax=ax2)
                disp2.cmap = plt.cm.hot
                disp2.add_colorbar()
                plt.title("slanted geometry")

                ax3 = fig.add_subplot(133)
                disp3 = CameraDisplay(unrot_geom, image=np.sum(unrot_signal, axis=1)
                                      if unrot_signal.shape[-1] == 25 else unrot_signal,
                                      ax=ax3)
                disp3.cmap = plt.cm.hot
                disp3.add_colorbar()
                plt.title("geometry converted back to hex")

                plt.show()


            # do some tailcuts cleaning
            mask1 = tailcuts_clean(cam_geom[tel_id], pmt_signal, 1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)

            mask2 = tailcuts_clean(unrot_geom, unrot_signal, 1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)
            pmt_signal[mask1==False] = 0
            unrot_signal[mask2==False] = 0

            '''
            testing back and forth conversion on hillas parameters... '''
            try:
                moments1 = hillas_parameters(cam_geom[tel_id].pix_x,
                                             cam_geom[tel_id].pix_y,
                                             pmt_signal)

                moments2 = hillas_parameters(unrot_geom.pix_x,
                                             unrot_geom.pix_y,
                                             unrot_signal)
            except (HillasParameterizationError, AssertionError) as e:
                '''
                we don't want this test to fail because the hillas code
                threw an error '''
                print(e)
                counter -= 1
                if counter < 0:
                    return
                else:
                    continue

            '''
            test if the hillas parameters from the original geometry and the
            forth-and-back rotated geometry are close '''
            assert np.allclose(
                [moments1.length.value, moments1.width.value,
                 moments1.phi.value],
                [moments2.length.value, moments2.width.value,
                 moments2.phi.value],
                rtol=1e-2, atol=1e-2)
            counter -= 1
            if counter < 0:
                return
Пример #41
0
class ImagePlotter(Component):
    name = 'ImagePlotter'

    display = Bool(False,
                   help='Display the photoelectron images on-screen as they '
                        'are produced.').tag(config=True)
    output_path = Unicode(None, allow_none=True,
                          help='Output path for the pdf containing all the '
                               'images. Set to None for no saved '
                               'output.').tag(config=True)

    def __init__(self, config, tool, **kwargs):
        """
        Plotter for camera images.

        Parameters
        ----------
        config : traitlets.loader.Config
            Configuration specified by config file or cmdline arguments.
            Used to set traitlet values.
            Set to None if no configuration to pass.
        tool : ctapipe.core.Tool
            Tool executable that is calling this component.
            Passes the correct logger to the component.
            Set to None if no Tool to pass.
        kwargs
        """
        super().__init__(config=config, parent=tool, **kwargs)
        self._current_tel = None
        self.c_intensity = None
        self.c_peakpos = None
        self.cb_intensity = None
        self.cb_peakpos = None
        self.pdf = None

        self._init_figure()

    def _init_figure(self):
        self.fig = plt.figure(figsize=(16, 7))
        self.ax_intensity = self.fig.add_subplot(1, 2, 1)
        self.ax_peakpos = self.fig.add_subplot(1, 2, 2)
        if self.output_path:
            self.log.info("Creating PDF: {}".format(self.output_path))
            self.pdf = PdfPages(self.output_path)

    def get_geometry(self, event, telid):
        return event.inst.subarray.tel[telid].camera

    def plot(self, event, telid):
        chan = 0
        image = event.dl1.tel[telid].image[chan]
        peakpos = event.dl1.tel[telid].peakpos[chan]

        if self._current_tel != telid:
            self._current_tel = telid

            self.ax_intensity.cla()
            self.ax_peakpos.cla()

            # Redraw camera
            geom = self.get_geometry(event, telid)
            self.c_intensity = CameraDisplay(geom, cmap=plt.cm.viridis,
                                             ax=self.ax_intensity)
            self.c_peakpos = CameraDisplay(geom, cmap=plt.cm.viridis,
                                           ax=self.ax_peakpos)

            tmaxmin = event.dl0.tel[telid].pe_samples.shape[2]
            t_chargemax = peakpos[image.argmax()]
            cmap_time = colors.LinearSegmentedColormap.from_list(
                'cmap_t', [(0 / tmaxmin, 'darkgreen'),
                           (0.6 * t_chargemax / tmaxmin, 'green'),
                           (t_chargemax / tmaxmin, 'yellow'),
                           (1.4 * t_chargemax / tmaxmin, 'blue'),
                           (1, 'darkblue')])
            self.c_peakpos.pixels.set_cmap(cmap_time)

            if not self.cb_intensity:
                self.c_intensity.add_colorbar(ax=self.ax_intensity,
                                              label='Intensity (p.e.)')
                self.cb_intensity = self.c_intensity.colorbar
            else:
                self.c_intensity.colorbar = self.cb_intensity
                self.c_intensity.update(True)
            if not self.cb_peakpos:
                self.c_peakpos.add_colorbar(ax=self.ax_peakpos,
                                            label='Peakpos (ns)')
                self.cb_peakpos = self.c_peakpos.colorbar
            else:
                self.c_peakpos.colorbar = self.cb_peakpos
                self.c_peakpos.update(True)

        self.c_intensity.image = image
        if peakpos is not None:
            self.c_peakpos.image = peakpos

        self.fig.suptitle("Event_index={}  Event_id={}  Telescope={}"
                          .format(event.count, event.r0.event_id, telid))


        if self.display:
            plt.pause(0.001)
        if self.pdf is not None:
            self.pdf.savefig(self.fig)

    def finish(self):
        if self.pdf is not None:
            self.log.info("Closing PDF")
            self.pdf.close()
Пример #42
0
def plot(event, telid, chan, extractor_name):
    # Extract required images
    dl0 = event.dl0.tel[telid].waveform[chan]

    t_pe = event.mc.tel[telid].photo_electron_image
    dl1 = event.dl1.tel[telid].image[chan]
    max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
    max_charges = np.max(dl0, axis=1)
    max_pix = int(np.argmax(max_charges))
    min_pix = int(np.argmin(max_charges))

    geom = event.inst.subarray.tel[telid].camera
    nei = geom.neighbors

    # Get Neighbours
    max_pixel_nei = nei[max_pix]
    min_pixel_nei = nei[min_pix]

    # Draw figures
    ax_max_nei = {}
    ax_min_nei = {}
    fig_waveforms = plt.figure(figsize=(18, 9))
    fig_waveforms.subplots_adjust(hspace=.5)
    fig_camera = plt.figure(figsize=(15, 12))

    ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
    ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
    ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
    ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
    ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
    ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
    ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
    ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

    ax_img_nei = fig_camera.add_subplot(2, 2, 1)
    ax_img_max = fig_camera.add_subplot(2, 2, 2)
    ax_img_true = fig_camera.add_subplot(2, 2, 3)
    ax_img_cal = fig_camera.add_subplot(2, 2, 4)

    # Draw max pixel traces
    ax_max_pix.plot(dl0[max_pix])
    ax_max_pix.set_xlabel("Time (ns)")
    ax_max_pix.set_ylabel("DL0 Samples (ADC)")
    ax_max_pix.set_title(
        f'(Max) Pixel: {max_pix}, True: {t_pe[max_pix]}, '
        f'Measured = {dl1[max_pix]:.3f}'
    )
    max_ylim = ax_max_pix.get_ylim()
    for i, ax in ax_max_nei.items():
        if len(max_pixel_nei) > i:
            pix = max_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(
                "(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                    .format(pix, t_pe[pix], dl1[pix])
            )
            ax.set_ylim(max_ylim)

    # Draw min pixel traces
    ax_min_pix.plot(dl0[min_pix])
    ax_min_pix.set_xlabel("Time (ns)")
    ax_min_pix.set_ylabel("DL0 Samples (ADC)")
    ax_min_pix.set_title(
        f'(Min) Pixel: {min_pix}, True: {t_pe[min_pix]}, '
        f'Measured = {dl1[min_pix]:.3f}'
    )
    ax_min_pix.set_ylim(max_ylim)
    for i, ax in ax_min_nei.items():
        if len(min_pixel_nei) > i:
            pix = min_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(
                f'(Min Nei) Pixel: {pix}, True: {t_pe[pix]}, '
                f'Measured = {dl1[pix]:.3f}'
            )
            ax.set_ylim(max_ylim)

    # Draw cameras
    nei_camera = np.zeros_like(max_charges, dtype=np.int)
    nei_camera[min_pixel_nei] = 2
    nei_camera[min_pix] = 1
    nei_camera[max_pixel_nei] = 3
    nei_camera[max_pix] = 4
    camera = CameraDisplay(geom, ax=ax_img_nei)
    camera.image = nei_camera
    ax_img_nei.set_title("Neighbour Map")
    ax_img_nei.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_nei.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    camera = CameraDisplay(geom, ax=ax_img_max)
    camera.image = dl0[:, max_time]
    camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
    ax_img_max.set_title(f"Max Timeslice (T = {max_time})")
    ax_img_max.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_max.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    camera = CameraDisplay(geom, ax=ax_img_true)
    camera.image = t_pe
    camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
    ax_img_true.set_title("True Charge")
    ax_img_true.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_true.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    camera = CameraDisplay(geom, ax=ax_img_cal)
    camera.image = dl1
    camera.add_colorbar(ax=ax_img_cal, label="Calib Charge (Photo-electrons)")
    ax_img_cal.set_title(f"Charge (integrator={extractor_name})")
    ax_img_cal.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_cal.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    fig_waveforms.suptitle(f"Integrator = {extractor_name}")
    fig_camera.suptitle(f"Camera = {geom.cam_id}")

    plt.show()
Пример #43
0
    def _display_camera_animation(self):
        # plt.style.use("ggplot")
        fig = plt.figure(num="ctapipe Camera Demo", figsize=(7, 7))
        ax = plt.subplot(111)

        # load the camera
        tel = TelescopeDescription.from_name(optics_name=self.optics,
                                             camera_name=self.camera)
        geom = tel.camera

        # poor-man's coordinate transform from telscope to camera frame (it's
        # better to use ctapipe.coordiantes when they are stable)
        foclen = tel.optics.equivalent_focal_length.to(geom.pix_x.unit).value
        fov = np.deg2rad(4.0)
        scale = foclen
        minwid = np.deg2rad(0.1)
        maxwid = np.deg2rad(0.3)
        maxlen = np.deg2rad(0.5)

        self.log.debug("scale={} m, wid=({}-{})".format(scale, minwid, maxwid))

        disp = CameraDisplay(
            geom, ax=ax, autoupdate=True,
            title="{}, f={}".format(tel, tel.optics.equivalent_focal_length)
        )
        disp.cmap = plt.cm.terrain

        def update(frame):


            centroid = np.random.uniform(-fov, fov, size=2) * scale
            width = np.random.uniform(0, maxwid-minwid) * scale + minwid
            length = np.random.uniform(0, maxlen) * scale + width
            angle = np.random.uniform(0, 360)
            intens = np.random.exponential(2) * 500
            model = toymodel.generate_2d_shower_model(centroid=centroid,
                                                      width=width,
                                                      length=length,
                                                      psi=angle * u.deg)
            self.log.debug(
                "Frame=%d width=%03f length=%03f intens=%03d",
                frame, width, length, intens
            )

            image, sig, bg = toymodel.make_toymodel_shower_image(
                geom,
                model.pdf,
                intensity=intens,
                nsb_level_pe=3,
            )

            # alternate between cleaned and raw images
            if self._counter == self.cleanframes:
                plt.suptitle("Image Cleaning ON")
                self.imclean = True
            if self._counter == self.cleanframes * 2:
                plt.suptitle("Image Cleaning OFF")
                self.imclean = False
                self._counter = 0
                disp.clear_overlays()

            if self.imclean:
                cleanmask = tailcuts_clean(geom, image,
                                           picture_thresh=10.0,
                                           boundary_thresh=5.0)
                for ii in range(2):
                    dilate(geom, cleanmask)
                image[cleanmask == 0] = 0  # zero noise pixels
                try:
                    hillas = hillas_parameters(geom, image)
                    disp.overlay_moments(hillas, with_label=False,
                                         color='red', alpha=0.7,
                                         linewidth=2, linestyle='dashed')
                except HillasParameterizationError:
                    disp.clear_overlays()
                    pass

            self.log.debug("Frame=%d  image_sum=%.3f max=%.3f",
                           self._counter, image.sum(), image.max())
            disp.image = image

            if self.autoscale:
                disp.set_limits_percent(95)
            else:
                disp.set_limits_minmax(-5, 200)

            disp.axes.figure.canvas.draw()
            self._counter += 1
            return [ax, ]

        frames = None if self.num_events == 0 else self.num_events
        repeat = True if self.num_events == 0 else False

        self.log.info("Running for {} frames".format(frames))
        self.anim = FuncAnimation(fig, update,
                                  interval=self.delay,
                                  frames=frames,
                                  repeat=repeat,
                                  blit=self.blit)

        if self.display:
            plt.show()
Пример #44
0
from ctapipe.image import toymodel
from ctapipe.io import CameraGeometry
from ctapipe.visualization import CameraDisplay
from matplotlib import pyplot as plt

if __name__ == '__main__':

    plt.style.use('ggplot')

    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(1, 1, 1)

    geom = CameraGeometry.from_name('hess', 1)
    disp = CameraDisplay(geom, ax=ax)
    disp.add_colorbar()

    model = toymodel.generate_2d_shower_model(
        centroid=(0.05, 0.0), width=0.005, length=0.025, psi='35d'
    )

    image, sig, bg = toymodel.make_toymodel_shower_image(
        geom, model.pdf, intensity=50, nsb_level_pe=20
    )

    disp.image = image

    mask = disp.image > 15
    disp.highlight_pixels(mask, linewidth=3)

    plt.show()
Пример #45
0
def transform_and_clean_hex_image(pmt_signal, cam_geom, photo_electrons):

    start_time = time.time()

    colors = cm.inferno(pmt_signal/max(pmt_signal))

    new_geom, new_signal = convert_geometry_1d_to_2d(
        cam_geom, pmt_signal, cam_geom.cam_id)

    print("rot_signal", np.count_nonzero(np.isnan(new_signal)))

    square_mask = new_geom.mask
    cleaned_img = wavelet_transform(new_signal,
                                    raw_option_string=args.raw)

    unrot_img = cleaned_img[square_mask]
    unrot_colors = cm.inferno(unrot_img/max(unrot_img))

    cleaned_img_ik = kill_isolpix(cleaned_img, threshold=.5)
    unrot_img_ik = cleaned_img_ik[square_mask]
    unrot_colors_ik = cm.inferno(unrot_img_ik/max(unrot_img_ik))

    square_image_add_noise = np.copy(new_signal)
    square_image_add_noise[~square_mask] = \
        np.random.normal(0.13, 5.77, np.count_nonzero(~square_mask))

    square_image_add_noise_cleaned = wavelet_transform(square_image_add_noise,
                                                       raw_option_string=args.raw)

    square_image_add_noise_cleaned_ik = kill_isolpix(square_image_add_noise_cleaned,
                                                     threshold=1.5)

    unrot_geom, unrot_noised_signal = convert_geometry_back(
        new_geom, square_image_add_noise_cleaned_ik, cam_geom.cam_id)

    end_time = time.time()
    print(end_time - start_time)

    global fig
    global cb1, ax1
    global cb2, ax2
    global cb3, ax3
    global cb4, ax4
    global cb5, ax5
    global cb6, ax6
    global cb7, ax7
    global cb8, ax8
    global cb9, ax9
    if fig is None:
        fig = plt.figure(figsize=(10, 10))
    else:
        fig.delaxes(ax1)
        fig.delaxes(ax2)
        fig.delaxes(ax3)
        fig.delaxes(ax4)
        fig.delaxes(ax5)
        fig.delaxes(ax6)
        fig.delaxes(ax7)
        fig.delaxes(ax8)
        fig.delaxes(ax9)
        cb1.remove()
        cb2.remove()
        cb3.remove()
        cb4.remove()
        cb5.remove()
        cb6.remove()
        cb7.remove()
        cb8.remove()
        cb9.remove()

    ax1 = fig.add_subplot(333)
    disp1 = CameraDisplay(cam_geom, image=photo_electrons, ax=ax1)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("photo-electron image")
    disp1.cmap = plt.cm.inferno
    disp1.add_colorbar()
    cb1 = disp1.colorbar

    ax2 = fig.add_subplot(336)
    disp2 = CameraDisplay(cam_geom, image=pmt_signal, ax=ax2)
    plt.gca().set_aspect('equal', adjustable='box')
    disp2.cmap = plt.cm.inferno
    disp2.add_colorbar()
    cb2 = disp2.colorbar
    plt.title("noisy image")

    ax3 = fig.add_subplot(331)
    plt.imshow(new_signal, interpolation='none', cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("noisy, slanted image")
    cb3 = plt.colorbar()

    ax4 = fig.add_subplot(334)
    plt.imshow(cleaned_img, interpolation='none', cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("cleaned, slanted image, islands not killed")
    cb4 = plt.colorbar()
    ax4.set_axis_off()

    ax5 = fig.add_subplot(337)
    plt.imshow(np.sqrt(cleaned_img_ik), interpolation='none', cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("cleaned, slanted image, islands killed")
    cb5 = plt.colorbar()
    ax5.set_axis_off()

    #
    ax6 = fig.add_subplot(332)
    plt.imshow(square_image_add_noise, interpolation='none', cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("slanted image, noise added")
    cb6 = plt.colorbar()
    ax6.set_axis_off()

    #
    ax7 = fig.add_subplot(335)
    plt.imshow(np.sqrt(square_image_add_noise_cleaned), interpolation='none',
               cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("slanted image, noise added, cleaned")
    cb7 = plt.colorbar()
    ax7.set_axis_off()

    ax8 = fig.add_subplot(338)
    plt.imshow(square_image_add_noise_cleaned_ik, interpolation='none',
               cmap=cm.inferno,
               origin='lower')
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("slanted image, noise added, cleaned, islands killed")
    cb8 = plt.colorbar()
    ax8.set_axis_off()

    try:
        ax9 = fig.add_subplot(339)
        disp9 = CameraDisplay(unrot_geom, image=unrot_noised_signal,
                              ax=ax9)
        plt.gca().set_aspect('equal', adjustable='box')
        plt.title("cleaned, original geometry, islands killed")
        disp9.cmap = plt.cm.inferno
        disp9.add_colorbar()
        cb9 = disp9.colorbar
    except:
        pass

    plt.suptitle(cam_geom.cam_id)
    plt.subplots_adjust(top=0.94, bottom=.08, left=0, right=.96, hspace=.41, wspace=.08)

    plt.pause(.1)
    response = input("press return to continue")
    if response != "":
        exit()
Пример #46
0
from matplotlib import pyplot as plt

from ctapipe.image import toymodel
from ctapipe.instrument import CameraGeometry
from ctapipe.visualization import CameraDisplay

if __name__ == '__main__':

    plt.style.use('ggplot')

    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(1, 1, 1)

    geom = CameraGeometry.from_name('NectarCam')
    disp = CameraDisplay(geom, ax=ax)
    disp.add_colorbar()

    model = toymodel.generate_2d_shower_model(
        centroid=(0.05, 0.0), width=0.05, length=0.15, psi='35d'
    )

    image, sig, bg = toymodel.make_toymodel_shower_image(
        geom, model.pdf, intensity=1500, nsb_level_pe=5
    )

    disp.image = image

    mask = disp.image > 10
    disp.highlight_pixels(mask, linewidth=2, color='crimson')

    plt.show()
Пример #47
0
def draw_neighbors(geom, pixel_index, color='r', **kwargs):
    """Draw lines between a pixel and its neighbors"""

    neigh = geom.neighbors[pixel_index]  # neighbor indices (not pixel ids)
    x, y = geom.pix_x[pixel_index].value, geom.pix_y[pixel_index].value
    for nn in neigh:
        nx, ny = geom.pix_x[nn].value, geom.pix_y[nn].value
        plt.plot([x, nx], [y, ny], color=color, **kwargs)


if __name__ == '__main__':

    # Load the camera
    geom = CameraGeometry.from_name("LSTCam")
    disp = CameraDisplay(geom)
    disp.set_limits_minmax(0, 300)
    disp.add_colorbar()

    # Create a fake camera image to display:
    model = toymodel.generate_2d_shower_model(centroid=(0.2, 0.0),
                                              width=0.01,
                                              length=0.1,
                                              psi='35d')

    image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
                                                         intensity=50,
                                                         nsb_level_pe=1000)

    # Apply image cleaning
    cleanmask = tailcuts_clean(geom, image, picture_thresh=200,
Пример #48
0
from ctapipe.visualization import CameraDisplay

if __name__ == '__main__':

    plt.style.use("ggplot")
    fig, ax = plt.subplots()

    # load the camera
    tel = TelescopeDescription.from_name("SST-1M", "DigiCam")
    geom = tel.camera

    fov = 0.3
    maxwid = 0.05
    maxlen = 0.1

    disp = CameraDisplay(geom, ax=ax)
    disp.cmap = 'inferno'
    disp.add_colorbar(ax=ax)

    def update(frame):
        x, y = np.random.uniform(-fov, fov, size=2)
        width = np.random.uniform(0.01, maxwid)
        length = np.random.uniform(width, maxlen)
        angle = np.random.uniform(0, 180)
        intens = width * length * (5e4 + 1e5 * np.random.exponential(2))

        model = toymodel.Gaussian(
            x=x * u.m,
            y=y * u.m,
            width=width * u.m,
            length=length * u.m,
Пример #49
0
    plt.style.use("ggplot")
    fig, ax = plt.subplots()

    # load the camera
    tel = TelescopeDescription.from_name("SST-1M","DigiCam")
    print(tel, tel.optics.effective_focal_length)
    geom = tel.camera

    # poor-man's coordinate transform from telscope to camera frame (it's
    # better to use ctapipe.coordiantes when they are stable)
    scale = tel.optics.effective_focal_length.to(geom.pix_x.unit).value
    fov = np.deg2rad(4.0)
    maxwid = np.deg2rad(0.01)
    maxlen = np.deg2rad(0.03)

    disp = CameraDisplay(geom, ax=ax)
    disp.cmap = plt.cm.terrain
    disp.add_colorbar(ax=ax)

    def update(frame):
        centroid = np.random.uniform(-fov, fov, size=2) * scale
        width = np.random.uniform(0, maxwid) * scale
        length = np.random.uniform(0, maxlen) * scale + width
        angle = np.random.uniform(0, 360)
        intens = np.random.exponential(2) * 50
        model = toymodel.generate_2d_shower_model(
            centroid=centroid,
            width=width,
            length=length,
            psi=angle * u.deg,
        )
Пример #50
0
def transform_and_clean_hex_samples(pmt_samples, cam_geom):

    # rotate all samples in the image to a rectangular image
    rot_geom, rot_samples = convert_geometry_1d_to_2d(
        cam_geom, pmt_samples, cam_geom.cam_id)

    print("rot samples.shape:", rot_samples.shape)

    # rotate the samples back to hex image
    unrot_geom, unrot_samples = convert_geometry_back(rot_geom, rot_samples,
                                                      cam_geom.cam_id)

    global fig
    global cb1, ax1
    global cb2, ax2
    global cb3, ax3
    if fig is None:
        fig = plt.figure(figsize=(10, 10))
    else:
        fig.delaxes(ax1)
        fig.delaxes(ax2)
        fig.delaxes(ax3)
        cb1.remove()
        cb2.remove()
        cb3.remove()

    ax1 = fig.add_subplot(221)
    disp1 = CameraDisplay(rot_geom, image=np.sum(rot_samples, axis=-1), ax=ax1)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("rotated image")
    disp1.cmap = plt.cm.inferno
    disp1.add_colorbar()
    cb1 = disp1.colorbar

    ax2 = fig.add_subplot(222)
    disp2 = CameraDisplay(cam_geom, image=np.sum(pmt_samples, axis=-1), ax=ax2)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("original image")
    disp2.cmap = plt.cm.inferno
    disp2.add_colorbar()
    cb2 = disp2.colorbar

    ax3 = fig.add_subplot(223)
    disp3 = CameraDisplay(unrot_geom, image=np.sum(unrot_samples, axis=-1), ax=ax3)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title("de-rotated image")
    disp3.cmap = plt.cm.inferno
    disp3.add_colorbar()
    cb3 = disp3.colorbar

    plt.pause(.1)
    response = input("press return to continue")
    if response != "":
        exit()
Пример #51
0
    def start(self):

        disp = None

        for event in tqdm(self.source,
                          desc='Tel{}'.format(self.tel),
                          total=self.reader.max_events,
                          disable=~self.progress):

            self.log.debug(event.trig)
            self.log.debug("Energy: {}".format(event.mc.energy))

            self.calibrator.calibrate(event)

            if disp is None:
                x, y = event.inst.pixel_pos[self.tel]
                focal_len = event.inst.optical_foclen[self.tel]
                geom = CameraGeometry.guess(x, y, focal_len)
                self.log.info(geom)
                disp = CameraDisplay(geom)
                # disp.enable_pixel_picker()
                disp.add_colorbar()
                if self.display:
                    plt.show(block=False)

            # display the event
            disp.axes.set_title('CT{:03d} ({}), event {:06d}'.format(
                self.tel, geom.cam_id, event.r0.event_id)
            )

            if self.samples:
                # display time-varying event
                data = event.dl0.tel[self.tel].pe_samples[self.channel]
                for ii in range(data.shape[1]):
                    disp.image = data[:, ii]
                    disp.set_limits_percent(70)
                    plt.suptitle("Sample {:03d}".format(ii))
                    if self.display:
                        plt.pause(self.delay)
                    if self.write:
                        plt.savefig('CT{:03d}_EV{:10d}_S{:02d}.png'
                                    .format(self.tel, event.r0.event_id, ii))
            else:
                # display integrated event:
                im = event.dl1.tel[self.tel].image[self.channel]

                if self.clean:
                    mask = tailcuts_clean(geom, im, picture_thresh=10,
                                          boundary_thresh=7)
                    im[~mask] = 0.0

                disp.image = im

                if self.hillas:
                    try:
                        ellipses = disp.axes.findobj(Ellipse)
                        if len(ellipses) > 0:
                            ellipses[0].remove()

                        params = hillas_parameters(pix_x=geom.pix_x,
                                                   pix_y=geom.pix_y, image=im)
                        disp.overlay_moments(params, color='pink', lw=3,
                                             with_label=False)
                    except HillasParameterizationError:
                        pass

                if self.display:
                    plt.pause(self.delay)
                if self.write:
                    plt.savefig('CT{:03d}_EV{:010d}.png'
                                .format(self.tel, event.r0.event_id))

        self.log.info("FINISHED READING DATA FILE")

        if disp is None:
            self.log.warning('No events for tel {} were found in {}. Try a '
                             'different EventIO file or another telescope'
                             .format(self.tel, self.infile),
                             )

        pass
Пример #52
0
"""
Example of drawing a Camera using a toymodel shower image.
"""

import matplotlib.pylab as plt

from ctapipe.image import toymodel, hillas_parameters, tailcuts_clean
from ctapipe.instrument import CameraGeometry
from ctapipe.visualization import CameraDisplay


if __name__ == '__main__':

    # Load the camera
    geom = CameraGeometry.from_name("LSTCam")
    disp = CameraDisplay(geom)
    disp.add_colorbar()

    # Create a fake camera image to display:
    model = toymodel.generate_2d_shower_model(
        centroid=(0.2, 0.0), width=0.05, length=0.15, psi='35d'
    )

    image, sig, bg = toymodel.make_toymodel_shower_image(
        geom, model.pdf, intensity=1500, nsb_level_pe=3
    )

    # Apply image cleaning
    cleanmask = tailcuts_clean(
        geom, image, picture_thresh=10, boundary_thresh=5
    )