def ctpn(self, sess, net, img): im, im_scale = self.check_img(img) timer = Timer() timer.tic() scores, boxes = test_ctpn(sess, net, im) timer.toc() print(('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0])) # Visualize detections for each class CONF_THRESH = 0.9 NMS_THRESH = 0.3 dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep] keep = np.where(dets[:, 4] >= 0.7)[0] dets = dets[keep, :] text_lines = self.connect_proposal(dets[:, :], dets[:, 4], im.shape[:2]) tmp = im.copy() text_recs = draw_boxes(tmp, text_lines, caption="im_name", wait=True) # self.show_results(tmp,im_scale, text_recs, thresh=0.9) return tmp, text_recs
def text_detect(img): #ctpn scale, max_scale = Config.SCALE,Config.MAX_SCALE img,f = resize_im(img,scale=scale,max_scale=max_scale) scores, boxes = test_ctpn(sess, net, img) textdetector = TextDetector() boxes = textdetector.detect(boxes,scores[:, np.newaxis],img.shape[:2]) text_recs,tmp = draw_boxes(img, boxes, caption='im_name', wait=True,is_display=False) return text_recs,tmp,img
def text_detect(img): scores, boxes, img = ctpn(img) textdetector = TextDetector() boxes = textdetector.detect(boxes, scores[:, np.newaxis], img.shape[:2]) text_recs, tmp = draw_boxes(img, boxes, caption='im_name', wait=True, is_display=False) return text_recs, tmp, img
def __text_detection(self): scores, self._boxes, self._image = ctpn(self._image, sess, net) self._boxes = self._text_detector.detect(self._boxes, scores[:, np.newaxis], self._image.shape[:2]) self._boxes, self.img_drawed_boxes = draw_boxes(self._image, self._boxes, caption='im_name', wait=True, is_display=False) self._boxes, self._image = correct_box(sort_box(self._boxes), self._image, self._text_process)