Пример #1
0
def get_Data(is_train, dataset_name, batch_size):
    val_transform = transforms.Compose([
        transforms.Resize((224,224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    voc_helen = ['bird', 'cat', 'cow', 'dog', 'horse', 'sheep', 'helen', 'voc_multi']
    ##cub dataset###
    label = None if is_train else 0
    if not is_train:
        batch_size = 1
    if dataset_name == 'cub':
        trainset = CUB_VOC(cub_file, dataset_name, 'iccnn', train=True, transform=val_transform, is_frac=label)
        testset = CUB_VOC(cub_file, dataset_name, 'iccnn', train=False, transform=val_transform, is_frac=label)
    ###cropped voc dataset###
    elif dataset_name in voc_helen:
        trainset = CUB_VOC(voc_file, dataset_name, 'iccnn', train=True, transform=val_transform, is_frac=label)
        testset = CUB_VOC(voc_file, dataset_name, 'iccnn', train=False, transform=val_transform, is_frac=label)
    ###celeb dataset###
    #elif dataset_name == 'celeb':
    #    trainset = Celeb(training = True, transform=None)
    #    testset = Celeb(training = False, transform=None)
    train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False)
    return train_loader, test_loader
Пример #2
0
def get_Data(is_train, dataset_name, batch_size):
    transform = transforms.Compose([
        transforms.RandomResizedCrop((224, 224), scale=(0.5, 1.0)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    val_transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    voc_helen_name = [
        'bird', 'cat', 'cow', 'dog', 'horse', 'sheep', 'helen', 'voc_multi'
    ]
    ##cub dataset###
    label = None if is_train else 0
    if dataset_name == 'cub':
        trainset = CUB_VOC(cub_file,
                           dataset_name,
                           'ori',
                           train=True,
                           transform=transform,
                           is_frac=label)
        testset = CUB_VOC(cub_file,
                          dataset_name,
                          'ori',
                          train=False,
                          transform=val_transform,
                          is_frac=label)
    ###cropped voc dataset###
    elif dataset_name in voc_helen_name:
        trainset = CUB_VOC(voc_file,
                           dataset_name,
                           'ori',
                           train=True,
                           transform=transform,
                           is_frac=label)
        testset = CUB_VOC(voc_file,
                          dataset_name,
                          'ori',
                          train=False,
                          transform=val_transform,
                          is_frac=label)
    ###celeb dataset###
    elif dataset_name == 'celeb':
        trainset = Celeb(celeb_file,
                         training=True,
                         transform=None,
                         train_num=162770)
        testset = Celeb(celeb_file,
                        training=False,
                        transform=None,
                        train_num=19962)
    train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(testset,
                             batch_size=batch_size,
                             shuffle=False,
                             drop_last=False)
    return train_loader, test_loader