Пример #1
0
    def restrict_solution(self):
        
        PerIntervalGains.restrict_solution(self)

        if self.ref_ant is not None:
            phase = np.angle(self.gains[...,self.ref_ant,0,0])
            self.gains[:,:,:,:,(0,1),(0,1)] *= np.exp(-1j*phase)[:,:,:,np.newaxis,np.newaxis]
Пример #2
0
    def __init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs,
                 chunk_label, options):
        """
        Initialises a 2x2 complex gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """
        # note that this sets up self.kernel
        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts,
                                  chunk_fs, chunk_label, options)

        # try guesstimating the PZD
        self._estimate_pzd = options["estimate-pzd"]
        self._offdiag_only = options["offdiag-only"]
Пример #3
0
 def __init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs,
              chunk_label, options):
     """
     Initialises a 2x2 complex gain machine.
     
     Args:
         label (str):
             Label identifying the Jones term.
         data_arr (np.ndarray): 
             Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
             visibilities. 
         ndir (int):
             Number of directions.
         nmod (nmod):
             Number of models.
         chunk_ts (np.ndarray):
             Times for the data being processed.
         chunk_fs (np.ndarray):
             Frequencies for the data being processsed.
         options (dict): 
             Dictionary of options. 
     """
     PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts,
                               chunk_fs, chunk_label, options,
                               self.get_kernel(options))
Пример #4
0
    def precompute_attributes(self, data_arr, model_arr, flags_arr, noise):
        """
        """
        PerIntervalGains.precompute_attributes(self, data_arr, model_arr,
                                               flags_arr, noise)

        if self._estimate_pzd:
            marr = model_arr[..., (0, 1), (1, 0)][:, 0].sum(0)
            darr = data_arr[..., (0, 1), (1, 0)][0]
            mask = (flags_arr[..., np.newaxis] != 0) | (marr == 0)
            dm = darr * (np.conj(marr) / abs(marr))
            dabs = np.abs(darr)
            dm[mask] = 0
            dabs[mask] = 0
            # collapse time/freq axis into intervals and sum antenna axes
            dm_sum = self.interval_sum(dm).sum(axis=(2, 3))
            dabs_sum = self.interval_sum(dabs).sum(axis=(2, 3))
            # sum off-diagonal terms
            dm_sum = dm_sum[..., 0] + np.conj(dm_sum[..., 1])
            dabs_sum = dabs_sum[..., 0] + np.conj(dabs_sum[..., 1])
            pzd = np.angle(dm_sum / dabs_sum)
            pzd[dabs_sum == 0] = 0

            print("{}: PZD estimate {}".format(self.chunk_label, pzd),
                  file=log(2))
            self.gains[:, :, :, :, 1, 1] = np.exp(-1j * pzd)[np.newaxis, :, :,
                                                             np.newaxis]
Пример #5
0
    def __init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs, chunk_label, options):
        """
        Initialises a diagonal phase-only gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """
        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod,
                                  chunk_ts, chunk_fs, chunk_label, options)

        # kernel used in solver is diag-diag in diag mode, else uses full kernel version
        if options.get('diag-data') or options.get('diag-only'):
            self.kernel_solve = cubical.kernels.import_kernel('diag_phase_only')
        else:
            self.kernel_solve = cubical.kernels.import_kernel('phase_only')

        self.phases = self.kernel.allocate_gain_array(self.gain_shape, dtype=self.ftype, zeros=True)
        self.gains = np.empty_like(self.phases, dtype=self.dtype)
        self.gains[:] = np.eye(self.n_cor) 
        self.old_gains = self.gains.copy()
Пример #6
0
    def precompute_attributes(self, model_arr, flags_arr, noise):
        """
        Set the initial weights to 1 and set the weights of the flags data points to 0

        Args:
            model_arr (np.ndarray):
                Shape (n_dir, n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing 
                model visibilities.
            flags_arr (np.ndarray):
                Shape (n_tim, n_fre, n_ant, n_ant) array containing  flags
        """
        PerIntervalGains.precompute_attributes(self, model_arr, flags_arr,
                                               noise)

        self.weights_shape = [
            self.n_mod, self.n_tim, self.n_fre, self.n_ant, self.n_ant, 1
        ]

        self.weights = np.ones(self.weights_shape, dtype=self.dtype)
        self.weights[:, flags_arr != 0] = 0
        self._init_flags = flags_arr

        unflagged = flags_arr == 0

        self.num_init_unflaged_eqs = np.sum(unflagged)
        self.v = 2.  #t-distribution number of degrees of freedom
Пример #7
0
    def __init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs,
                 chunk_label, options):
        """
        Initialises a diagonal phase-only gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """
        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts,
                                  chunk_fs, chunk_label, options,
                                  self.get_kernel(options))

        self.phases = self.cykernel.allocate_gain_array(self.gain_shape,
                                                        dtype=self.ftype,
                                                        zeros=True)
        self.gains = np.empty_like(self.phases, dtype=self.dtype)
        self.gains[:] = np.eye(self.n_cor)
        self.old_gains = self.gains.copy()
Пример #8
0
    def restrict_solution(self):
        """
        Restricts the solution by invoking the inherited restrict_soultion method and applying
        any machine specific restrictions.
        """
        
        PerIntervalGains.restrict_solution(self)

        if self.ref_ant is not None:
            phase = np.angle(self.gains[...,self.ref_ant,(0,1),(0,1)])
            self.gains *= np.exp(-1j*phase)[:,:,:,np.newaxis,:,np.newaxis]
Пример #9
0
    def restrict_solution(self):
        """
        Restricts the solution by invoking the inherited restrict_soultion method and applying
        any machine specific restrictions.
        """

        PerIntervalGains.restrict_solution(self)

        if self.ref_ant is not None:
            self.phases -= self.phases[:,:,:,self.ref_ant,:,:][:,:,:,np.newaxis,0,0]
        for idir in self.fix_directions:
            self.phases[idir, ...] = 0
Пример #10
0
    def compute_update(self, model_arr, obser_arr):
        """
        This function computes the update step of the weighted GN/LM method. This is
        equivalent to the complete (((J^H)WJ)^-1)(J^H)WR.

        Args:
            obser_arr (np.array): Array containing the observed visibilities.
            model_arr (np.array): Array containing the model visibilities.
            gains (np.array): Array containing the current gain estimates.
            jhwjinv (np.array): Array containing (J^H)WJ)^-1. (Invariant)

        Returns:
            update (np.array): Array containing the result of computing
                (((J^H)WJ)^-1)(J^H)WR
        """
        flag_count = PerIntervalGains.compute_update(model_arr, obser_arr)

        #Computing the weights
        resid_arr = np.empty_like(obser_arr)
        residuals = self.compute_residual(obser_arr, model_arr, resid_arr)

        covinv = self.compute_covinv(residuals)

        self.weights, self.v = self.update_weights(residuals, covinv,
                                                   self.weights, self.v)

        self.restrict_solution()

        return flag_count
Пример #11
0
    def __init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs,
                 chunk_label, options):
        """
        Initialises a weighted complex 2x2 gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """

        # clumsy but necessary: can't import at top level (OMP must not be touched before worker processes
        # are forked off), so we import it only in here

        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts,
                                  chunk_fs, chunk_label, options,
                                  self.get_kernel(options))

        self.residuals = np.empty_like(data_arr)

        self.save_weights = options.get("robust-save-weights", False)

        self.label = label

        self.cov_type = options.get(
            "robust-cov", "hybrid"
        )  #adding an option to compute residuals covariance or just assume 1 as in Robust-t paper

        self.npol = options.get(
            "robust-npol", 2
        )  #testing if the number of polarizations really have huge effects

        self.v_int = options.get("robust-int", 5)
Пример #12
0
    def precompute_attributes(self, data_arr, model_arr, flags_arr, noise):
        """
        Precompute (J\ :sup:`H`\J)\ :sup:`-1`, which does not vary with iteration.

        Args:
            model_arr (np.ndarray):
                Shape (n_dir, n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing 
                model visibilities.
        """
        PerIntervalGains.precompute_attributes(self, data_arr, model_arr, flags_arr, noise)

        self.jhjinv = np.zeros_like(self.gains)

        self.kernel_solve.compute_jhj(model_arr, self.jhjinv, self.t_int, self.f_int)

        self.kernel_solve.compute_jhjinv(self.jhjinv, self.jhjinv, self.gflags, self.eps, FL.ILLCOND)

        self.jhjinv = self.jhjinv.real
Пример #13
0
    def importable_solutions(self, grid0):
        """ Returns a dictionary of importable solutions for this machine type. """
        # can import 2x2 complex gain, with a corr1/corr2 axis
        solutions = PerIntervalGains.importable_solutions(self, grid0)

        # but also phase (with a corr axis)
        solutions['phase'] = dict(dir=grid0['dir'] if self.dd_term else [0], ant=grid0['ant'], corr=grid0['corr'], **self.interval_grid)

        return solutions
Пример #14
0
    def exportable_solutions():
        """ Returns a dictionary of exportable solutions for this machine type. """

        exportables = PerIntervalGains.exportable_solutions()

        exportables.update({
            "phase": (0., ("dir", "time", "freq", "ant", "corr")),
            "phase.err": (0., ("dir", "time", "freq", "ant", "corr")),
        })

        return exportables
Пример #15
0
    def __init__(self, label, data_arr, ndir, nmod,
                 chunk_ts, chunk_fs, chunk_label, options):

        """
        Initialises a weighted complex 2x2 gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """

        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs, chunk_label, options)

        self.kernel_robust = cubical.kernels.import_kernel("full_W_complex")

        self.residuals = np.empty_like(data_arr)

        self.save_weights = options.get("robust-save-weights", False)
        
        self.label = label

        self.cov_type = options.get("robust-cov", "compute") #adding an option to compute residuals covariance or just assume 1 as in Robust-t paper

        self.npol = options.get("robust-npol", 2.) #testing if the number of polarizations really have huge effects

        self.v_int = options.get("robust-int", 1)

        self.cov_scale = options.get("robust-scale", True) # scale the covariance by n_corr*2
Пример #16
0
    def __init__(self, label, model_arr, ndir, nmod, chunk_ts, chunk_fs,
                 chunk_label, options):
        # clumsy but necessary: can't import at top level (OMP must not be touched before worker processes
        # are forked off), so we import it only in here
        import cubical.kernels.cyfull_W_complex
        global cyfull
        cyfull = cubical.kernels.cyfull_W_complex

        PerIntervalGains.__init__(self, label, model_arr, ndir, nmod, chunk_ts,
                                  chunk_fs, chunk_label, options)

        self.gains = np.empty(self.gain_shape, dtype=self.dtype)

        self.gains[:] = np.eye(self.n_cor)

        self.old_gains = self.gains.copy()

        self.weights_shape = [
            self.n_mod, self.n_tim, self.n_fre, self.n_ant, self.n_ant, 1
        ]

        self.weights = np.ones(self.weights_shape, dtype=self.dtype)

        self.v = 2.
Пример #17
0
    def __init__(self, label, data_arr, ndir, nmod,
                 chunk_ts, chunk_fs, chunk_label, options):

        """
        Initialises a weighted complex 2x2 gain machine.
        
        Args:
            label (str):
                Label identifying the Jones term.
            data_arr (np.ndarray): 
                Shape (n_mod, n_tim, n_fre, n_ant, n_ant, n_cor, n_cor) array containing observed 
                visibilities. 
            ndir (int):
                Number of directions.
            nmod (nmod):
                Number of models.
            chunk_ts (np.ndarray):
                Times for the data being processed.
            chunk_fs (np.ndarray):
                Frequencies for the data being processsed.
            options (dict): 
                Dictionary of options. 
        """

        PerIntervalGains.__init__(self, label, data_arr, ndir, nmod, chunk_ts, chunk_fs, chunk_label, options)

        if self.is_diagonal:
            self.kernel_robust = cubical.kernels.import_kernel("diag_robust")
        else:
            self.kernel_robust = cubical.kernels.import_kernel("full_W_complex")

        self.residuals = np.empty_like(data_arr)

        self.save_weights = options.get("robust-save-weights", False)
        
        self.label = label

        self.cov_type = options.get("robust-cov", "compute") # adding an option to compute residuals covariance or just assume 1 as in Robust-t paper

        self.npol = options.get("robust-npol", 2.) # testing if the number of polarizations really have huge effects

        self.v_int = options.get("robust-int", 5)

        self.cov_scale = options.get("robust-scale", 0) # scale down the covariance by this factor

        self.cov_thresh = options.get("robust-cov-thresh",  1)

        self.sigma_thresh = options.get("robust-sigma-thresh", 3)

        self.robust_flag_weights = options.get("robust-flag-weights", True)

        self.fixed_v = False

        self.not_all_flagged = True

        self._flag = True

        self.any_new = 0

        self.is_robust = True # to identify this machine as the robust solver

        self._estimate_pzd = options["estimate-pzd"]

        # this will be set to PZD and exp(-i*PZD) once the PZD estimate is done
        self._pzd = 0
        self._exp_pzd = 1
Пример #18
0
 def exportable_solutions():
     """ Returns a dictionary of exportable solutions for this machine type. """
     sols = PerIntervalGains.exportable_solutions()
     sols["pzd"] = (0.0, ("time", "freq"))
     return sols