Пример #1
0
def test_real_algos_runner(algo_name):
    pair = algorithms.algorithm_by_name(algo_name)

    if (algo_name == 'UMAP' and not has_umap()) or \
       (algo_name == 'FIL' and not has_xgboost()):
        pytest.xfail()

    runner = AccuracyComparisonRunner([20], [5],
                                      dataset_name='classification',
                                      test_fraction=0.20)
    results = runner.run(pair)[0]
    print(results)
    assert results["cuml_acc"] is not None
Пример #2
0
def all_algorithms():
    """Returns all defined AlgorithmPair objects"""
    algorithms = [
        AlgorithmPair(
            sklearn.cluster.KMeans,
            cuml.cluster.KMeans,
            shared_args=dict(init="k-means++",
                             n_clusters=8,
                             max_iter=300,
                             n_init=1),
            cuml_args=dict(oversampling_factor=0),
            name="KMeans",
            accepts_labels=False,
            accuracy_function=metrics.homogeneity_score,
        ),
        AlgorithmPair(
            sklearn.decomposition.PCA,
            cuml.PCA,
            shared_args=dict(n_components=10),
            name="PCA",
            accepts_labels=False,
        ),
        AlgorithmPair(
            sklearn.decomposition.TruncatedSVD,
            cuml.decomposition.tsvd.TruncatedSVD,
            shared_args=dict(n_components=10),
            name="tSVD",
            accepts_labels=False,
        ),
        AlgorithmPair(
            sklearn.random_projection.GaussianRandomProjection,
            cuml.random_projection.GaussianRandomProjection,
            shared_args=dict(n_components=10),
            name="GaussianRandomProjection",
            bench_func=fit_transform,
            accepts_labels=False,
        ),
        AlgorithmPair(
            sklearn.random_projection.SparseRandomProjection,
            cuml.random_projection.SparseRandomProjection,
            shared_args=dict(n_components=10),
            name="SparseRandomProjection",
            bench_func=fit_transform,
            accepts_labels=False,
        ),
        AlgorithmPair(
            sklearn.neighbors.NearestNeighbors,
            cuml.neighbors.NearestNeighbors,
            shared_args=dict(n_neighbors=1024),
            cpu_args=dict(algorithm="brute", n_jobs=-1),
            cuml_args={},
            name="NearestNeighbors",
            accepts_labels=False,
            bench_func=fit_kneighbors,
        ),
        AlgorithmPair(
            sklearn.cluster.DBSCAN,
            cuml.DBSCAN,
            shared_args=dict(eps=3, min_samples=2),
            cpu_args=dict(algorithm="brute"),
            name="DBSCAN",
            accepts_labels=False,
        ),
        AlgorithmPair(
            sklearn.linear_model.LinearRegression,
            cuml.linear_model.LinearRegression,
            shared_args={},
            name="LinearRegression",
            accepts_labels=True,
            accuracy_function=metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.linear_model.ElasticNet,
            cuml.linear_model.ElasticNet,
            shared_args={
                "alpha": 0.1,
                "l1_ratio": 0.5
            },
            name="ElasticNet",
            accepts_labels=True,
            accuracy_function=metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.linear_model.Lasso,
            cuml.linear_model.Lasso,
            shared_args={},
            name="Lasso",
            accepts_labels=True,
            accuracy_function=metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.linear_model.Ridge,
            cuml.linear_model.Ridge,
            shared_args={},
            name="Ridge",
            accepts_labels=True,
            accuracy_function=metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.linear_model.LogisticRegression,
            cuml.linear_model.LogisticRegression,
            shared_args=dict(),  # Use default solvers
            name="LogisticRegression",
            accepts_labels=True,
            accuracy_function=metrics.accuracy_score,
        ),
        AlgorithmPair(
            sklearn.ensemble.RandomForestClassifier,
            cuml.ensemble.RandomForestClassifier,
            shared_args={
                "max_features": 1.0,
                "n_estimators": 10
            },
            name="RandomForestClassifier",
            accepts_labels=True,
            cpu_data_prep_hook=_labels_to_int_hook,
            cuml_data_prep_hook=_labels_to_int_hook,
            accuracy_function=metrics.accuracy_score,
        ),
        AlgorithmPair(
            sklearn.ensemble.RandomForestRegressor,
            cuml.ensemble.RandomForestRegressor,
            shared_args={
                "max_features": 1.0,
                "n_estimators": 10
            },
            name="RandomForestRegressor",
            accepts_labels=True,
            accuracy_function=metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.manifold.TSNE,
            cuml.manifold.TSNE,
            shared_args=dict(),
            name="TSNE",
            accepts_labels=False,
        ),
        AlgorithmPair(
            None,
            cuml.linear_model.MBSGDClassifier,
            shared_args={},
            cuml_args=dict(eta0=0.005, epochs=100),
            name="MBSGDClassifier",
            accepts_labels=True,
            accuracy_function=cuml.metrics.accuracy_score,
        ),
        AlgorithmPair(
            sklearn.svm.SVC,
            cuml.svm.SVC,
            shared_args={"kernel": "rbf"},
            cuml_args={},
            name="SVC-RBF",
            accepts_labels=True,
            accuracy_function=cuml.metrics.accuracy_score,
        ),
        AlgorithmPair(
            sklearn.svm.SVC,
            cuml.svm.SVC,
            shared_args={"kernel": "linear"},
            cuml_args={},
            name="SVC-Linear",
            accepts_labels=True,
            accuracy_function=cuml.metrics.accuracy_score,
        ),
        AlgorithmPair(
            sklearn.svm.SVR,
            cuml.svm.SVR,
            shared_args={"kernel": "rbf"},
            cuml_args={},
            name="SVR-RBF",
            accepts_labels=True,
            accuracy_function=cuml.metrics.r2_score,
        ),
        AlgorithmPair(
            sklearn.svm.SVR,
            cuml.svm.SVR,
            shared_args={"kernel": "linear"},
            cuml_args={},
            name="SVR-Linear",
            accepts_labels=True,
            accuracy_function=cuml.metrics.r2_score,
        ),
        AlgorithmPair(sklearn.neighbors.KNeighborsClassifier,
                      cuml.neighbors.KNeighborsClassifier,
                      shared_args={},
                      cuml_args={},
                      name="KNeighborsClassifier",
                      accepts_labels=True,
                      accuracy_function=cuml.metrics.accuracy_score),
        AlgorithmPair(sklearn.neighbors.KNeighborsRegressor,
                      cuml.neighbors.KNeighborsRegressor,
                      shared_args={},
                      cuml_args={},
                      name="KNeighborsRegressor",
                      accepts_labels=True,
                      accuracy_function=cuml.metrics.r2_score),
        AlgorithmPair(sklearn.naive_bayes.MultinomialNB,
                      cuml.naive_bayes.MultinomialNB,
                      shared_args={},
                      cuml_args={},
                      name="MultinomialNB",
                      accepts_labels=True,
                      accuracy_function=cuml.metrics.accuracy_score),
        AlgorithmPair(
            treelite,
            cuml.ForestInference,
            shared_args=dict(num_rounds=100, max_depth=10),
            cuml_args=dict(
                fil_algo="AUTO",
                output_class=False,
                threshold=0.5,
                storage_type="auto",
            ),
            name="FIL",
            accepts_labels=False,
            setup_cpu_func=_build_treelite_classifier,
            setup_cuml_func=_build_fil_classifier,
            cpu_data_prep_hook=_treelite_format_hook,
            accuracy_function=_treelite_fil_accuracy_score,
            bench_func=predict,
        ),
        AlgorithmPair(
            treelite,
            cuml.ForestInference,
            shared_args=dict(n_estimators=100, max_leaf_nodes=2**10),
            cuml_args=dict(
                fil_algo="AUTO",
                output_class=False,
                threshold=0.5,
                storage_type="SPARSE",
            ),
            name="Sparse-FIL-SKL",
            accepts_labels=False,
            setup_cpu_func=_build_cpu_skl_classifier,
            setup_cuml_func=_build_fil_skl_classifier,
            accuracy_function=_treelite_fil_accuracy_score,
            bench_func=predict,
        ),
        AlgorithmPair(
            umap.UMAP if has_umap() else None,
            cuml.manifold.UMAP,
            shared_args=dict(n_neighbors=5, n_epochs=500),
            name="UMAP-Unsupervised",
            accepts_labels=True,
            accuracy_function=cuml.metrics.trustworthiness,
        ),
        AlgorithmPair(
            umap.UMAP if has_umap() else None,
            cuml.manifold.UMAP,
            shared_args=dict(n_neighbors=5, n_epochs=500),
            name="UMAP-Supervised",
            accepts_labels=True,
            accuracy_function=cuml.metrics.trustworthiness,
        ),
        AlgorithmPair(sklearn.preprocessing.StandardScaler,
                      StandardScaler,
                      shared_args=dict(),
                      name="StandardScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.MinMaxScaler,
                      MinMaxScaler,
                      shared_args=dict(),
                      name="MinMaxScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.MaxAbsScaler,
                      MaxAbsScaler,
                      shared_args=dict(),
                      name="MaxAbsScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.Normalizer,
                      Normalizer,
                      shared_args=dict(),
                      name="Normalizer",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(skSimpleImputer,
                      SimpleImputer,
                      shared_args=dict(),
                      name="SimpleImputer",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.RobustScaler,
                      RobustScaler,
                      shared_args=dict(),
                      name="RobustScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.PolynomialFeatures,
                      PolynomialFeatures,
                      shared_args=dict(),
                      name="PolynomialFeatures",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.StandardScaler,
                      StandardScaler,
                      shared_args=dict(),
                      name="SparseCSRStandardScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.MinMaxScaler,
                      MinMaxScaler,
                      shared_args=dict(),
                      name="SparseCSRMinMaxScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.MaxAbsScaler,
                      MaxAbsScaler,
                      shared_args=dict(),
                      name="SparseCSRMaxAbsScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.Normalizer,
                      Normalizer,
                      shared_args=dict(),
                      name="SparseCSRNormalizer",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.RobustScaler,
                      RobustScaler,
                      shared_args=dict(),
                      name="SparseCSCRobustScaler",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(skSimpleImputer,
                      SimpleImputer,
                      shared_args=dict(),
                      name="SparseCSCSimpleImputer",
                      accepts_labels=False,
                      bench_func=fit_transform),
        AlgorithmPair(sklearn.preprocessing.PolynomialFeatures,
                      PolynomialFeatures,
                      shared_args=dict(),
                      name="SparseCSRPolynomialFeatures",
                      accepts_labels=False,
                      bench_func=fit_transform)
    ]

    return algorithms
Пример #3
0
from cuml.benchmark.bench_helper_funcs import (
    fit,
    fit_kneighbors,
    fit_transform,
    predict,
    _build_cpu_skl_classifier,
    _build_fil_skl_classifier,
    _build_fil_classifier,
    _build_treelite_classifier,
    _treelite_fil_accuracy_score,
)
import treelite
import treelite_runtime

if has_umap():
    import umap


class AlgorithmPair:
    """
    Wraps a cuML algorithm and (optionally) a cpu-based algorithm
    (typically scikit-learn, but does not need to be as long as it offers
    `fit` and `predict` or `transform` methods).
    Provides mechanisms to run each version with default arguments.
    If no CPU-based version of the algorithm is available, pass None for the
    cpu_class when instantiating

    Parameters
    ----------
    cpu_class : class