Пример #1
0
def to_gpu_array(arr):

    mat = arr.to_gpu_array()
    dev = device_of_devicendarray(mat)

    # Return canonical device id as string
    return mat, dev
Пример #2
0
def as_gpu_matrix(arr):
    blap = arr.compute()
    mat = blap.as_gpu_matrix(order="F")
    dev = device_of_devicendarray(mat)

    # Return canonical device id as string
    return mat, dev
Пример #3
0
def input_to_device_arrays(X, params):
    """
    Create output arrays and return them w/ the input array(s)
    :param arr:
        A tuple in the form of (X, y)
    :return:
    """

    if len(X[0]) == 0:
        return None

    start_idx = X[0].index[0]
    stop_idx = X[0].index[-1]

    X_mat = numba_utils.row_matrix(X[0])
    dev = device_of_devicendarray(X_mat)

    shape = X_mat.shape[0]*params["k"]

    # Create output numba arrays.
    I_ndarr = rmm.to_device(np.zeros(shape, dtype=np.int64, order="C"))
    D_ndarr = rmm.to_device(np.zeros(shape, dtype=np.float32,
                                     order="C"))

    # Return canonical device id as string
    return [(X_mat, I_ndarr, D_ndarr)], dev, (start_idx, stop_idx)
Пример #4
0
def fit_to_device_arrays(arr):
    """
    :param arr:
        A tuple in the form of (X, y, coef)
    :return:
    """

    mats = [(X.compute().as_gpu_matrix(order='F'), y.to_gpu_array(), coef)
            for X, y, coef in arr]

    dev = device_of_devicendarray(mats[0][0])

    # Return canonical device id as string
    return mats, dev
Пример #5
0
def to_gpu_matrix(df):
    """
    Turn input cudf into a Numba array. Returns device
    of current worker and the start/stop indexes
    of the cudf.
    :param df:
    :return:
    """

    try:
        start_idx = df.index[0]
        stop_idx = df.index[-1]
        gpu_matrix = numba_utils.row_matrix(df)
        dev = device_of_devicendarray(gpu_matrix)
        return dev, gpu_matrix, (start_idx, stop_idx)

    except Exception as e:
        import traceback
        logging.error("Error in to_gpu_matrix(" + str(e))
        traceback.print_exc()
        pass
Пример #6
0
def predict_to_device_arrays(arr, worker, loc_dict, nparts, dtype):
    """
    :param arr:
        A tuple in the form of (X, y, coef)
    :return:
    """
    part_number = list(loc_dict.keys())[list(loc_dict.values()).index(worker)]

    mats = []
    for X, coef in arr:
        nrows = len(X)
        part_size = ceil(nrows / nparts)
        up_limit = min((part_number + 1) * part_size, nrows)
        mat = X.compute().as_gpu_matrix(order='F')
        pred = cuda.to_device(
            np.zeros(up_limit - (part_number * part_size), dtype=dtype))
        mats.append([mat, coef.to_gpu_array(), pred])

    dev = device_of_devicendarray(mats[0][0])

    # Return canonical device id as string
    return mats, dev