def test_pipeline_with_classification(classification_dataset, model_key): X_train, X_test, y_train, y_test = classification_dataset model_const = models[model_key] if model_key == 'RandomForestClassifier': model = model_const(n_bins=2) else: model = model_const() pipe = Pipeline(steps=[('scaler', StandardScaler()), ('model', model)]) pipe.fit(X_train, y_train) prediction = pipe.predict(X_test) assert isinstance(prediction, cupy.ndarray)
def test_pipeline_with_regression(regression_dataset, model_key, instantiation): X_train, X_test, y_train, y_test = regression_dataset model_const = models[model_key] if model_key == 'RandomForestRegressor': model = model_const(n_bins=2) else: model = model_const() if instantiation == 'Pipeline': pipe = Pipeline(steps=[('scaler', StandardScaler()), ('model', model)]) elif instantiation == 'make_pipeline': pipe = make_pipeline(StandardScaler(), model) pipe.fit(X_train, y_train) prediction = pipe.predict(X_test) assert isinstance(prediction, cupy.ndarray) _ = pipe.score(X_test, y_test)
def test_pipeline_with_classification(classification_dataset, model_key, instantiation): X_train, X_test, y_train, y_test = classification_dataset model_const = models[model_key] if model_key == 'RandomForestClassifier': model = model_const(n_bins=2) else: model = model_const() if instantiation == 'Pipeline': pipe = Pipeline(steps=[('scaler', StandardScaler()), ('model', model)]) elif instantiation == 'make_pipeline': pipe = make_pipeline(StandardScaler(), model) pipe.fit(X_train, y_train) prediction = pipe.predict(X_test) assert isinstance(prediction, cupy.ndarray) if model_key == 'RandomForestClassifier': pytest.skip("RandomForestClassifier is not yet supported" "by the Pipeline utility") _ = pipe.score(X_test, y_test)