def fit(self, y): """Fit label binarizer Parameters ---------- y : Dask.Array of shape [n_samples,] or [n_samples, n_classes] chunked by row. Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ # Take the unique classes and broadcast them all around the cluster. futures = self.client.sync(_extract_partitions, y) unique = [ self.client.submit(LabelBinarizer._func_unique_classes, f) for w, f in futures ] classes = self.client.compute(unique, True) classes = rmm_cupy_ary(cp.unique, rmm_cupy_ary(cp.stack, classes, axis=0)) self._set_internal_model(LB(**self.kwargs).fit(classes)) return self
def _func_create_model(**kwargs): return LB(**kwargs)