Пример #1
0
def append(arr, values, axis=None):
    """
    Append values to the end of an array.

    Args:
        arr (array_like):
            Values are appended to a copy of this array.
        values (array_like):
            These values are appended to a copy of ``arr``.  It must be of the
            correct shape (the same shape as ``arr``, excluding ``axis``).  If
            ``axis`` is not specified, ``values`` can be any shape and will be
            flattened before use.
        axis (int or None):
            The axis along which ``values`` are appended.  If ``axis`` is not
            given, both ``arr`` and ``values`` are flattened before use.

    Returns:
        cupy.ndarray
            A copy of ``arr`` with ``values`` appended to ``axis``.  Note that
            ``append`` does not occur in-place: a new array is allocated and
            filled.  If ``axis`` is None, ``out`` is a flattened array.

    .. seealso:: :func:`numpy.append`
    """
    # TODO(asi1024): Implement fast path for scalar inputs.
    arr = cupy.asarray(arr)
    values = cupy.asarray(values)
    if axis is None:
        return _core.concatenate_method((arr.ravel(), values.ravel()),
                                        0).ravel()
    return _core.concatenate_method((arr, values), axis)
Пример #2
0
def kron(a, b):
    """Returns the kronecker product of two arrays.

    Args:
        a (~cupy.ndarray): The first argument.
        b (~cupy.ndarray): The second argument.

    Returns:
        ~cupy.ndarray: Output array.

    .. seealso:: :func:`numpy.kron`

    """
    a_ndim = a.ndim
    b_ndim = b.ndim
    if a_ndim == 0 or b_ndim == 0:
        return cupy.multiply(a, b)

    ndim = b_ndim
    a_shape = a.shape
    b_shape = b.shape
    if a_ndim != b_ndim:
        if b_ndim > a_ndim:
            a_shape = (1,) * (b_ndim - a_ndim) + a_shape
        else:
            b_shape = (1,) * (a_ndim - b_ndim) + b_shape
            ndim = a_ndim

    axis = ndim - 1
    out = _core.tensordot_core(
        a, b, None, a.size, b.size, 1, a_shape + b_shape)
    for _ in range(ndim):
        out = _core.concatenate_method(out, axis=axis)

    return out
Пример #3
0
def concatenate(tup, axis=0, out=None, *, dtype=None, casting='same_kind'):
    """Joins arrays along an axis.

    Args:
        tup (sequence of arrays): Arrays to be joined. All of these should have
            same dimensionalities except the specified axis.
        axis (int or None): The axis to join arrays along.
            If axis is None, arrays are flattened before use.
            Default is 0.
        out (cupy.ndarray): Output array.
        dtype (str or dtype): If provided, the destination array will have this
            dtype. Cannot be provided together with ``out``.
        casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional):
            Controls what kind of data casting may occur. Defaults to
            ``'same_kind'``.

    Returns:
        cupy.ndarray: Joined array.

    .. seealso:: :func:`numpy.concatenate`

    """
    if axis is None:
        tup = [m.ravel() for m in tup]
        axis = 0
    return _core.concatenate_method(tup, axis, out, dtype, casting)
Пример #4
0
def concatenate(tup, axis=0, out=None):
    """Joins arrays along an axis.

    Args:
        tup (sequence of arrays): Arrays to be joined. All of these should have
            same dimensionalities except the specified axis.
        axis (int or None): The axis to join arrays along.
            If axis is None, arrays are flattened before use.
            Default is 0.
        out (cupy.ndarray): Output array.

    Returns:
        cupy.ndarray: Joined array.

    .. seealso:: :func:`numpy.concatenate`

    """
    if axis is None:
        tup = [m.ravel() for m in tup]
        axis = 0
    return _core.concatenate_method(tup, axis, out)
Пример #5
0
def cov(a, y=None, rowvar=True, bias=False, ddof=None):
    """Returns the covariance matrix of an array.

    This function currently does not support ``fweights`` and ``aweights``
    options.

    Args:
        a (cupy.ndarray): Array to compute covariance matrix.
        y (cupy.ndarray): An additional set of variables and observations.
        rowvar (bool): If ``True``, then each row represents a variable, with
            observations in the columns. Otherwise, the relationship is
            transposed.
        bias (bool): If ``False``, normalization is by ``(N - 1)``, where N is
            the number of observations given (unbiased estimate). If ``True``,
            then normalization is by ``N``.
        ddof (int): If not ``None`` the default value implied by bias is
            overridden. Note that ``ddof=1`` will return the unbiased estimate
            and ``ddof=0`` will return the simple average.

    Returns:
        cupy.ndarray: The covariance matrix of the input array.

    .. seealso:: :func:`numpy.cov`

    """
    if ddof is not None and ddof != int(ddof):
        raise ValueError('ddof must be integer')

    if a.ndim > 2:
        raise ValueError('Input must be <= 2-d')

    if y is None:
        dtype = numpy.promote_types(a.dtype, numpy.float64)
    else:
        if y.ndim > 2:
            raise ValueError('y must be <= 2-d')
        dtype = functools.reduce(numpy.promote_types,
                                 (a.dtype, y.dtype, numpy.float64))

    X = cupy.array(a, ndmin=2, dtype=dtype)
    if not rowvar and X.shape[0] != 1:
        X = X.T
    if X.shape[0] == 0:
        return cupy.array([]).reshape(0, 0)
    if y is not None:
        y = cupy.array(y, copy=False, ndmin=2, dtype=dtype)
        if not rowvar and y.shape[0] != 1:
            y = y.T
        X = _core.concatenate_method((X, y), axis=0)

    if ddof is None:
        ddof = 0 if bias else 1

    fact = X.shape[1] - ddof
    if fact <= 0:
        warnings.warn('Degrees of freedom <= 0 for slice',
                      RuntimeWarning,
                      stacklevel=2)
        fact = 0.0

    X -= X.mean(axis=1)[:, None]
    out = X.dot(X.T.conj()) * (1 / cupy.float64(fact))

    return out.squeeze()
Пример #6
0
def cov(a,
        y=None,
        rowvar=True,
        bias=False,
        ddof=None,
        fweights=None,
        aweights=None,
        *,
        dtype=None):
    """Returns the covariance matrix of an array.

    This function currently does not support ``fweights`` and ``aweights``
    options.

    Args:
        a (cupy.ndarray): Array to compute covariance matrix.
        y (cupy.ndarray): An additional set of variables and observations.
        rowvar (bool): If ``True``, then each row represents a variable, with
            observations in the columns. Otherwise, the relationship is
            transposed.
        bias (bool): If ``False``, normalization is by ``(N - 1)``, where N is
            the number of observations given (unbiased estimate). If ``True``,
            then normalization is by ``N``.
        ddof (int): If not ``None`` the default value implied by bias is
            overridden. Note that ``ddof=1`` will return the unbiased estimate
            and ``ddof=0`` will return the simple average.

        fweights (cupy.ndarray, int): 1-D array of integer frequency weights.
            the number of times each observation vector should be repeated.
            It is required that fweights >= 0. However, the function will not
            error when fweights < 0 for performance reasons.
        aweights (cupy.ndarray): 1-D array of observation vector weights.
            These relative weights are typically large for observations
            considered "important" and smaller for observations considered
            less "important". If ``ddof=0`` the array of weights can be used
            to assign probabilities to observation vectors.
            It is required that aweights >= 0. However, the function will not
            error when aweights < 0 for performance reasons.
        dtype: Data type specifier. By default, the return data-type will have
            at least `numpy.float64` precision.

    Returns:
        cupy.ndarray: The covariance matrix of the input array.

    .. seealso:: :func:`numpy.cov`

    """
    if ddof is not None and ddof != int(ddof):
        raise ValueError('ddof must be integer')

    if a.ndim > 2:
        raise ValueError('Input must be <= 2-d')

    if dtype is None:
        if y is None:
            dtype = numpy.promote_types(a.dtype, numpy.float64)
        else:
            if y.ndim > 2:
                raise ValueError('y must be <= 2-d')
            dtype = functools.reduce(numpy.promote_types,
                                     (a.dtype, y.dtype, numpy.float64))

    X = cupy.array(a, ndmin=2, dtype=dtype)
    if not rowvar and X.shape[0] != 1:
        X = X.T
    if X.shape[0] == 0:
        return cupy.array([]).reshape(0, 0)
    if y is not None:
        y = cupy.array(y, copy=False, ndmin=2, dtype=dtype)
        if not rowvar and y.shape[0] != 1:
            y = y.T
        X = _core.concatenate_method((X, y), axis=0)

    if ddof is None:
        ddof = 0 if bias else 1

    w = None
    if fweights is not None:
        if not isinstance(fweights, cupy.ndarray):
            raise TypeError("fweights must be a cupy.ndarray")
        if fweights.dtype.char not in 'bBhHiIlLqQ':
            raise TypeError("fweights must be integer")
        fweights = fweights.astype(dtype=float)
        if fweights.ndim > 1:
            raise RuntimeError("cannot handle multidimensional fweights")
        if fweights.shape[0] != X.shape[1]:
            raise RuntimeError("incompatible numbers of samples and fweights")
        w = fweights

    if aweights is not None:
        if not isinstance(fweights, cupy.ndarray):
            raise TypeError("aweights must be a cupy.ndarray")
        aweights = aweights.astype(dtype=float)
        if aweights.ndim > 1:
            raise RuntimeError("cannot handle multidimensional aweights")
        if aweights.shape[0] != X.shape[1]:
            raise RuntimeError("incompatible numbers of samples and aweights")
        if w is None:
            w = aweights
        else:
            w *= aweights

    avg, w_sum = cupy.average(X, axis=1, weights=w, returned=True)
    w_sum = w_sum[0]

    # Determine the normalization
    if w is None:
        fact = X.shape[1] - ddof
    elif ddof == 0:
        fact = w_sum
    elif aweights is None:
        fact = w_sum - ddof
    else:
        fact = w_sum - ddof * sum(w * aweights) / w_sum

    if fact <= 0:
        warnings.warn('Degrees of freedom <= 0 for slice',
                      RuntimeWarning,
                      stacklevel=2)
        fact = 0.0

    X -= X.mean(axis=1)[:, None]
    if w is None:
        X_T = X.T
    else:
        X_T = (X * w).T
    out = X.dot(X_T.conj()) * (1 / cupy.float64(fact))

    return out.squeeze()