Пример #1
0
def multinomial(n, pvals, size=None):
    """Returns an array from multinomial distribution.

    Args:
        n (int): Number of trials.
        pvals (cupy.ndarray): Probabilities of each of the ``p`` different
            outcomes. The sum of these values must be 1.
        size (int or tuple of ints or None): Shape of a sample in each trial.
            For example when ``size`` is ``(a, b)``, shape of returned value is
            ``(a, b, p)`` where ``p`` is ``len(pvals)``.
            If ``size`` is ``None``, it is treated as ``()``. So, shape of
            returned value is ``(p,)``.

    Returns:
        cupy.ndarray: An array drawn from multinomial distribution.

    .. note::
       It does not support ``sum(pvals) < 1`` case.

    .. seealso:: :meth:`numpy.random.multinomial
                 <numpy.random.mtrand.RandomState.multinomial>`
    """

    if size is None:
        m = 1
        size = ()
    elif isinstance(size, int):
        m = size
        size = (size, )
    else:
        size = tuple(size)
        m = 1
        for x in size:
            m *= x

    p = len(pvals)
    shape = size + (p, )
    ys = basic.zeros(shape, 'l')
    if ys.size > 0:
        xs = choice(p, p=pvals, size=n * m)
        _multinominal_kernel(xs, p, n, ys)
    return ys
Пример #2
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        if shape is not None:
            if not _util.isshape(shape):
                raise ValueError('invalid shape (must be a 2-tuple of int)')
            shape = int(shape[0]), int(shape[1])

        if base.issparse(arg1):
            x = arg1.asformat(self.format)
            data = x.data
            indices = x.indices
            indptr = x.indptr

            if arg1.format != self.format:
                # When formats are differnent, all arrays are already copied
                copy = False

            if shape is None:
                shape = arg1.shape

        elif _util.isshape(arg1):
            m, n = arg1
            m, n = int(m), int(n)
            data = basic.zeros(0, dtype if dtype else 'd')
            indices = basic.zeros(0, 'i')
            indptr = basic.zeros(self._swap(m, n)[0] + 1, dtype='i')
            # shape and copy argument is ignored
            shape = (m, n)
            copy = False

        elif scipy_available and scipy.sparse.issparse(arg1):
            # Convert scipy.sparse to cupyx.scipy.sparse
            x = arg1.asformat(self.format)
            data = cupy.array(x.data)
            indices = cupy.array(x.indices, dtype='i')
            indptr = cupy.array(x.indptr, dtype='i')
            copy = False

            if shape is None:
                shape = arg1.shape

        elif isinstance(arg1, tuple) and len(arg1) == 2:
            # Note: This implementation is not efficeint, as it first
            # constructs a sparse matrix with coo format, then converts it to
            # compressed format.
            sp_coo = coo.coo_matrix(arg1, shape=shape, dtype=dtype, copy=copy)
            sp_compressed = sp_coo.asformat(self.format)
            data = sp_compressed.data
            indices = sp_compressed.indices
            indptr = sp_compressed.indptr

        elif isinstance(arg1, tuple) and len(arg1) == 3:
            data, indices, indptr = arg1
            if not (base.isdense(data) and data.ndim == 1
                    and base.isdense(indices) and indices.ndim == 1
                    and base.isdense(indptr) and indptr.ndim == 1):
                raise ValueError('data, indices, and indptr should be 1-D')

            if len(data) != len(indices):
                raise ValueError('indices and data should have the same size')

        elif base.isdense(arg1):
            if arg1.ndim > 2:
                raise TypeError('expected dimension <= 2 array or matrix')
            elif arg1.ndim == 1:
                arg1 = arg1[None]
            elif arg1.ndim == 0:
                arg1 = arg1[None, None]
            data, indices, indptr = self._convert_dense(arg1)
            copy = False
            if shape is None:
                shape = arg1.shape

        else:
            raise ValueError('Unsupported initializer format')

        if dtype is None:
            dtype = data.dtype
        else:
            dtype = numpy.dtype(dtype)

        if dtype.char not in '?fdFD':
            raise ValueError(
                'Only bool, float32, float64, complex64 and complex128 '
                'are supported')

        data = data.astype(dtype, copy=copy)
        sparse_data._data_matrix.__init__(self, data)

        self.indices = indices.astype('i', copy=copy)
        self.indptr = indptr.astype('i', copy=copy)

        if shape is None:
            shape = self._swap(len(indptr) - 1, int(indices.max()) + 1)

        major, minor = self._swap(*shape)
        if len(indptr) != major + 1:
            raise ValueError('index pointer size (%d) should be (%d)' %
                             (len(indptr), major + 1))

        self._descr = cusparse.MatDescriptor.create()
        self._shape = shape