Пример #1
0
def lsqr(A, b):
    """Solves linear system with QR decomposition.

    Find the solution to a large, sparse, linear system of equations.
    The function solves ``Ax = b``. Given two-dimensional matrix ``A`` is
    decomposed into ``Q * R``.

    Args:
        A (cupy.ndarray or cupyx.scipy.sparse.csr_matrix): The input matrix
            with dimension ``(N, N)``
        b (cupy.ndarray): Right-hand side vector.

    Returns:
        tuple:
            Its length must be ten. It has same type elements
            as SciPy. Only the first element, the solution vector ``x``, is
            available and other elements are expressed as ``None`` because
            the implementation of cuSOLVER is different from the one of SciPy.
            You can easily calculate the fourth element by ``norm(b - Ax)``
            and the ninth element by ``norm(x)``.

    .. seealso:: :func:`scipy.sparse.linalg.lsqr`
    """
    if runtime.is_hip:
        raise RuntimeError('HIP does not support lsqr')
    if not sparse.isspmatrix_csr(A):
        A = sparse.csr_matrix(A)
    # csr_matrix is 2d
    _util._assert_stacked_square(A)
    _util._assert_cupy_array(b)
    m = A.shape[0]
    if b.ndim != 1 or len(b) != m:
        raise ValueError('b must be 1-d array whose size is same as A')

    # Cast to float32 or float64
    if A.dtype == 'f' or A.dtype == 'd':
        dtype = A.dtype
    else:
        dtype = numpy.promote_types(A.dtype, 'f')

    handle = device.get_cusolver_sp_handle()
    nnz = A.nnz
    tol = 1.0
    reorder = 1
    x = cupy.empty(m, dtype=dtype)
    singularity = numpy.empty(1, numpy.int32)

    if dtype == 'f':
        csrlsvqr = cusolver.scsrlsvqr
    else:
        csrlsvqr = cusolver.dcsrlsvqr
    csrlsvqr(
        handle, m, nnz, A._descr.descriptor, A.data.data.ptr,
        A.indptr.data.ptr, A.indices.data.ptr, b.data.ptr, tol, reorder,
        x.data.ptr, singularity.ctypes.data)

    # The return type of SciPy is always float64. Therefore, x must be casted.
    x = x.astype(numpy.float64)
    ret = (x, None, None, None, None, None, None, None, None, None)
    return ret
Пример #2
0
def csrlsvqr(A, b, tol=0, reorder=1):
    """Solves the linear system ``Ax = b`` using QR factorization.

    Args:
        A (cupyx.scipy.sparse.csr_matrix): Sparse matrix with dimension
            ``(M, M)``.
        b (cupy.ndarray): Dense vector with dimension ``(M,)``.
        tol (float): Tolerance to decide if singular or not.
        reorder (int): Reordering scheme to reduce zero fill-in.
            1: symrcm is used.
            2: symamd is used.
            3: csrmetisnd is used.
            else: no reordering.
    """
    if not check_availability('csrlsvqr'):
        raise RuntimeError('csrlsvqr is not available.')

    if not _cupyx.scipy.sparse.isspmatrix_csr(A):
        raise ValueError('A must be CSR sparse matrix')
    if not isinstance(b, _cupy.ndarray):
        raise ValueError('b must be cupy.ndarray')
    if b.ndim != 1:
        raise ValueError('b.ndim must be 1 (actual: {})'.format(b.ndim))
    if not (A.shape[0] == A.shape[1] == b.shape[0]):
        raise ValueError('invalid shape')
    if A.dtype != b.dtype:
        raise TypeError('dtype mismatch')

    dtype = A.dtype
    if dtype.char == 'f':
        t = 's'
    elif dtype.char == 'd':
        t = 'd'
    elif dtype.char == 'F':
        t = 'c'
    elif dtype.char == 'D':
        t = 'z'
    else:
        raise TypeError('Invalid dtype (actual: {})'.format(dtype))
    solve = getattr(_cusolver, t + 'csrlsvqr')

    tol = max(tol, 0)
    m = A.shape[0]
    x = _cupy.empty((m,), dtype=dtype)
    singularity = _numpy.empty((1,), _numpy.int32)

    handle = _device.get_cusolver_sp_handle()
    solve(handle, m, A.nnz, A._descr.descriptor, A.data.data.ptr,
          A.indptr.data.ptr, A.indices.data.ptr, b.data.ptr, tol, reorder,
          x.data.ptr, singularity.ctypes.data)

    if singularity[0] >= 0:
        _warnings.warn('A is not positive definite or near singular under '
                       'tolerance {} (singularity: {})'.
                       format(tol, singularity))
    return x
Пример #3
0
def lschol(A, b):
    """Solves linear system with cholesky decomposition.

    Find the solution to a large, sparse, linear system of equations.
    The function solves ``Ax = b``. Given two-dimensional matrix ``A`` is
    decomposed into ``L * L^*``.

    Args:
        A (cupy.ndarray or cupy.sparse.csr_matrix): The input matrix with
            dimension ``(N, N)``. Must be positive-definite input matrix.
            Only symmetric real matrix is supported currently.
        b (cupy.ndarray): Right-hand side vector.

    Returns:
        ret (cupy.ndarray): The solution vector ``x``.

    """

    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    if not cupy.sparse.isspmatrix_csr(A):
        A = cupy.sparse.csr_matrix(A)
    util._assert_nd_squareness(A)
    util._assert_cupy_array(b)
    m = A.shape[0]
    if b.ndim != 1 or len(b) != m:
        raise ValueError('b must be 1-d array whose size is same as A')

    # Cast to float32 or float64
    if A.dtype == 'f' or A.dtype == 'd':
        dtype = A.dtype
    else:
        dtype = numpy.find_common_type((A.dtype, 'f'), ())

    handle = device.get_cusolver_sp_handle()
    nnz = A.nnz
    tol = 1.0
    reorder = 1
    x = cupy.empty(m, dtype=dtype)
    singularity = numpy.empty(1, numpy.int32)

    if dtype == 'f':
        csrlsvchol = cusolver.scsrlsvchol
    else:
        csrlsvchol = cusolver.dcsrlsvchol
    csrlsvchol(handle, m, nnz, A._descr.descriptor, A.data.data.ptr,
               A.indptr.data.ptr, A.indices.data.ptr, b.data.ptr, tol, reorder,
               x.data.ptr, singularity.ctypes.data)

    # The return type of SciPy is always float64.
    x = x.astype(numpy.float64)

    return x