Пример #1
0
def get_dH2(lab1, lab2):
    """squared hue difference term occurring in deltaE_cmc and deltaE_ciede94

    Despite its name, "dH" is not a simple difference of hue values.  We avoid
    working directly with the hue value, since differencing angles is
    troublesome.  The hue term is usually written as:
        c1 = sqrt(a1**2 + b1**2)
        c2 = sqrt(a2**2 + b2**2)
        term = (a1-a2)**2 + (b1-b2)**2 - (c1-c2)**2
        dH = sqrt(term)

    However, this has poor roundoff properties when a or b is dominant.
    Instead, ab is a vector with elements a and b.  The same dH term can be
    re-written as:
        |ab1-ab2|**2 - (|ab1| - |ab2|)**2
    and then simplified to:
        2*|ab1|*|ab2| - 2*dot(ab1, ab2)
    """
    a1, b1 = cp.rollaxis(lab1, -1)[1:3]
    a2, b2 = cp.rollaxis(lab2, -1)[1:3]

    # magnitude of (a, b) is the chroma
    C1 = cp.hypot(a1, b1)
    C2 = cp.hypot(a2, b2)

    term = (C1 * C2) - (a1 * a2 + b1 * b2)
    return 2 * term
Пример #2
0
def dot(a, b, out=None):
    """Returns a dot product of two arrays.

    For arrays with more than one axis, it computes the dot product along the
    last axis of ``a`` and the second-to-last axis of ``b``. This is just a
    matrix product if the both arrays are 2-D. For 1-D arrays, it uses their
    unique axis as an axis to take dot product over.

    Args:
        a (cupy.ndarray): The left argument.
        b (cupy.ndarray): The right argument.
        out (cupy.ndarray): Output array.

    Returns:
        cupy.ndarray: The dot product of ``a`` and ``b``.

    .. seealso:: :func:`numpy.dot`

    """
    a_ndim = a.ndim
    b_ndim = b.ndim
    assert a_ndim > 0 and b_ndim > 0
    a_is_vec = a_ndim == 1
    b_is_vec = b_ndim == 1

    if a_is_vec:
        a = cupy.reshape(a, (1, a.size))
        a_ndim = 2
    if b_is_vec:
        b = cupy.reshape(b, (b.size, 1))
        b_ndim = 2

    a_axis = a_ndim - 1
    b_axis = b_ndim - 2

    if a.shape[a_axis] != b.shape[b_axis]:
        raise ValueError('Axis dimension mismatch')

    if a_axis:
        a = cupy.rollaxis(a, a_axis, 0)
    if b_axis:
        b = cupy.rollaxis(b, b_axis, 0)

    k = a.shape[0]
    m = b.size // k
    n = a.size // k

    ret_shape = a.shape[1:] + b.shape[1:]
    if out is None:
        if a_is_vec:
            ret_shape = () if b_is_vec else ret_shape[1:]
        elif b_is_vec:
            ret_shape = ret_shape[:-1]
    else:
        if out.size != n * m:
            raise ValueError('Output array has an invalid size')
        if not out.flags.c_contiguous:
            raise ValueError('Output array must be C-contiguous')

    return _tensordot_core(a, b, out, n, m, k, ret_shape)
Пример #3
0
def deltaE_cie76(lab1, lab2):
    """Euclidean distance between two points in Lab color space

    Parameters
    ----------
    lab1 : array_like
        reference color (Lab colorspace)
    lab2 : array_like
        comparison color (Lab colorspace)

    Returns
    -------
    dE : array_like
        distance between colors `lab1` and `lab2`

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Color_difference
    .. [2] A. R. Robertson, "The CIE 1976 color-difference formulae,"
           Color Res. Appl. 2, 7-11 (1977).
    """
    L1, a1, b1 = cp.rollaxis(lab1, -1)[:3]
    L2, a2, b2 = cp.rollaxis(lab2, -1)[:3]
    out = (L2 - L1) * (L2 - L1)
    out += (a2 - a1) * (a2 - a1)
    out += (b2 - b1) * (b2 - b1)
    return cp.sqrt(out, out=out)
Пример #4
0
def dot(a, b, out=None):
    """Returns a dot product of two arrays.

    For arrays with more than one axis, it computes the dot product along the
    last axis of ``a`` and the second-to-last axis of ``b``. This is just a
    matrix product if the both arrays are 2-D. For 1-D arrays, it uses their
    unique axis as an axis to take dot product over.

    Args:
        a (cupy.ndarray): The left argument.
        b (cupy.ndarray): The right argument.
        out (cupy.ndarray): Output array.

    Returns:
        cupy.ndarray: The dot product of ``a`` and ``b``.

    .. seealso:: :func:`numpy.dot`

    """
    a_ndim = a.ndim
    b_ndim = b.ndim
    assert a_ndim > 0 and b_ndim > 0
    a_is_vec = a_ndim == 1
    b_is_vec = b_ndim == 1

    if a_is_vec:
        a = cupy.reshape(a, (1, a.size))
        a_ndim = 2
    if b_is_vec:
        b = cupy.reshape(b, (b.size, 1))
        b_ndim = 2

    a_axis = a_ndim - 1
    b_axis = b_ndim - 2

    if a.shape[a_axis] != b.shape[b_axis]:
        raise ValueError('Axis dimension mismatch')

    if a_axis:
        a = cupy.rollaxis(a, a_axis, 0)
    if b_axis:
        b = cupy.rollaxis(b, b_axis, 0)

    k = a.shape[0]
    m = b.size // k
    n = a.size // k

    ret_shape = a.shape[1:] + b.shape[1:]
    if out is None:
        if a_is_vec:
            ret_shape = () if b_is_vec else ret_shape[1:]
        elif b_is_vec:
            ret_shape = ret_shape[:-1]
    else:
        if out.size != n * m:
            raise ValueError('Output array has an invalid size')
        if not out.flags.c_contiguous:
            raise ValueError('Output array must be C-contiguous')

    return _tensordot_core(a, b, out, n, m, k, ret_shape)
Пример #5
0
def moments_central(image, center=None, order=3, **kwargs):
    """Calculate all central image moments up to a certain order.

    The center coordinates (cr, cc) can be calculated from the raw moments as:
    {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that central moments are translation invariant but not scale and
    rotation invariant.

    Parameters
    ----------
    image : nD double or uint8 array
        Rasterized shape as image.
    center : tuple of float, optional
        Coordinates of the image centroid. This will be computed if it
        is not provided.
    order : int, optional
        The maximum order of moments computed.

    Returns
    -------
    mu : (``order + 1``, ``order + 1``) array
        Central image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = cp.zeros((20, 20), dtype=cp.double)
    >>> image[13:17, 13:17] = 1
    >>> M = moments(image)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> moments_central(image, centroid)
    array([[16.,  0., 20.,  0.],
           [ 0.,  0.,  0.,  0.],
           [20.,  0., 25.,  0.],
           [ 0.,  0.,  0.,  0.]])
    """
    if center is None:
        center = centroid(image)
    calc = image.astype(float)
    for dim, dim_length in enumerate(image.shape):
        delta = cp.arange(dim_length, dtype=float) - center[dim]
        powers_of_delta = delta[:, cp.newaxis] ** cp.arange(order + 1)
        calc = cp.rollaxis(calc, dim, image.ndim)
        calc = cp.dot(calc, powers_of_delta)
        calc = cp.rollaxis(calc, -1, dim)
    return calc
Пример #6
0
def convolve2d(in1, in2, mode='full'):
    """
        note only support H * W * N * 1 convolve 2d
    """
    in1 = in1.transpose(2, 3, 0, 1)  # to N * C * H * W
    in2 = in2.transpose(2, 3, 0, 1)
    out_c, _, kh, kw = in2.shape
    n, _, h, w = in1.shape

    if mode == 'full':
        ph, pw = kh - 1, kw - 1
        out_h, out_w = h - kh + 1 + ph * 2, w - kw + 1 + pw * 2  # TODO
    elif mode == 'valid':
        ph, pw = 0, 0
        out_h, out_w = h - kh + 1, w - kw + 1  # TODO
    else:
        raise NotImplementedError

    y = cp.empty((n, out_c, out_h, out_w), dtype=in1.dtype)

    col = im2col_gpu(in1, kh, kw, 1, 1, ph, pw)
    y = cp.tensordot(col, in2, ((1, 2, 3), (1, 2, 3))).astype(in1.dtype,
                                                              copy=False)
    y = cp.rollaxis(y, 3, 1)
    return y.transpose(2, 3, 0, 1)
def reshape_x_cupy(
    data: np.ndarray, dtype=cp.float16, hide_map_prob: float = 0.0
) -> np.ndarray:
    """
    Get images from data as a list and preprocess them (using GPU).
    Input:
     - data: ndarray [num_examples x 6]
     -dtype: numpy dtype for the output array
     -hide_map_prob: Probability for removing the minimap (black square)
      from the sequence of images (0<=hide_map_prob<=1)
    Output:
    - ndarray [num_examples * 5, num_channels, H, W]

    """

    mean = cp.array([0.485, 0.456, 0.406], dtype=dtype)
    std = cp.array([0.229, 0.224, 0.225], dtype=dtype)
    reshaped = np.zeros((len(data) * 5, 3, 270, 480), dtype=dtype)
    for i in range(0, len(data)):
        black_minimap: bool = (random.random() <= hide_map_prob)
        for j in range(0, 5):
            img = cp.array(data[i][j], dtype=dtype)
            if black_minimap:  # Put a black square over the minimap
                img[215:, :80] = cp.zeros((55, 80, 3), dtype=dtype)

            reshaped[i * 5 + j] = cp.asnumpy(
                cp.rollaxis((img / dtype(255.0)) - mean / std, 2, 0,)
            )

    return reshaped
Пример #8
0
def take(a, indices, axis=None, out=None):
    """Takes elements of an array at specified indices along an axis.

    This is an implementation of "fancy indexing" at single axis.

    This function does not support ``mode`` option.

    Args:
        a (cupy.ndarray): Array to extract elements.
        indices (int or array-like): Indices of elements that this function
            takes.
        axis (int): The axis along which to select indices. The flattened input
            is used by default.
        out (cupy.ndarray): Output array. If provided, it should be of
            appropriate shape and dtype.

    Returns:
        cupy.ndarray: The result of fancy indexing.

    .. seealso:: :func:`numpy.take`

    """
    if axis is None:
        a = a.ravel()
        lshape = ()
        rshape = ()
    else:
        if axis >= a.ndim:
            raise ValueError('Axis overrun')
        lshape = a.shape[:axis]
        rshape = a.shape[axis + 1:]

    if numpy.isscalar(indices):
        a = cupy.rollaxis(a, axis)
        if out is None:
            return a[indices].copy()
        else:
            out[:] = a[indices]
            return out
    elif not isinstance(indices, cupy.ndarray):
        indices = cupy.array(indices, dtype=int)

    out_shape = lshape + indices.shape + rshape
    if out is None:
        out = cupy.empty(out_shape, dtype=a.dtype)
    else:
        if out.dtype != a.dtype:
            raise TypeError('Output dtype mismatch')
        if out.shape != out_shape:
            raise ValueError('Output shape mismatch')

    cdim = indices.size
    rdim = internal.prod(rshape)
    indices = cupy.reshape(
        indices, (1,) * len(lshape) + indices.shape + (1,) * len(rshape))
    return _take_kernel(a, indices, cdim, rdim, out)
Пример #9
0
def calc_single_view(ioperand, subscript):
    """Calculates 'ii->i' by cupy.diagonal if needed.

    Args:
        ioperand (cupy.ndarray): Array to be calculated diagonal.
        subscript (str):
            Specifies the subscripts. If the same label appears
            more than once, calculate diagonal for those axes.
    """

    if '@' in subscript:
        assert subscript.count('@') == 1
        assert ioperand.ndim >= len(subscript) - 1
    else:
        assert ioperand.ndim == len(subscript)

    subscripts_excluded_at = subscript.replace('@', '')
    labels = set(subscripts_excluded_at)
    label_to_axis = collections.defaultdict(list)
    for i, label in enumerate(subscript):
        label_to_axis[label].append(i)

    result = ioperand
    count_dict = collections.Counter(subscript)
    ellipsis_pos = subscript.find('@')

    for label in labels:
        if count_dict[label] == 1:
            continue
        axes_to_diag = []
        for i, char in enumerate(subscripts_excluded_at):
            if char == label:
                if ellipsis_pos == -1 or i < ellipsis_pos:
                    axes_to_diag.append(i)
                else:
                    axes_to_diag.append(i - len(subscripts_excluded_at))
        axes_to_diag = cupy.core.normalize_axis_tuple(axes_to_diag,
                                                      result.ndim)
        for axis in reversed(axes_to_diag[1:]):
            shape_a = result.shape[axis]
            shape_b = result.shape[axes_to_diag[0]]
            if shape_a != shape_b:
                raise ValueError('dimensions in operand 0 for collapsing'
                                 ' index \'{0}\' don\'t match'
                                 ' ({1} != {2})'.format(label, shape_a,
                                                        shape_b))
            result = result.diagonal(0, axis, axes_to_diag[0])
            result = cupy.rollaxis(result, -1, axes_to_diag[0])
            if ellipsis_pos != -1 and axis > ellipsis_pos:
                axis -= result.ndim - len(subscript) + 1
            subscript = subscript[:axis] + subscript[axis + 1:]
            subscripts_excluded_at = subscript.replace('@', '')
    return result, subscript
Пример #10
0
def inner(a, b):
    """Returns the inner product of two arrays.

    It uses the last axis of each argument to take sum product.

    Args:
        a (cupy.ndarray): The first argument.
        b (cupy.ndarray): The second argument.

    Returns:
        cupy.ndarray: The inner product of ``a`` and ``b``.

    .. seealso:: :func:`numpy.inner`

    """
    a_ndim = a.ndim
    b_ndim = b.ndim
    if a_ndim == 0 or b_ndim == 0:
        return cupy.multiply(a, b)

    a_axis = a_ndim - 1
    b_axis = b_ndim - 1

    if a.shape[-1] != b.shape[-1]:
        raise ValueError('Axis dimension mismatch')

    if a_axis:
        a = cupy.rollaxis(a, a_axis, 0)
    if b_axis:
        b = cupy.rollaxis(b, b_axis, 0)

    ret_shape = a.shape[1:] + b.shape[1:]

    k = a.shape[0]
    n = a.size // k
    m = b.size // k

    return core.tensordot_core(a, b, None, n, m, k, ret_shape)
Пример #11
0
def inner(a, b):
    """Returns the inner product of two arrays.

    It uses the last axis of each argument to take sum product.

    Args:
        a (cupy.ndarray): The first argument.
        b (cupy.ndarray): The second argument.

    Returns:
        cupy.ndarray: The inner product of ``a`` and ``b``.

    .. seealso:: :func:`numpy.inner`

    """
    a_ndim = a.ndim
    b_ndim = b.ndim
    if a_ndim == 0 or b_ndim == 0:
        return cupy.multiply(a, b)

    a_axis = a_ndim - 1
    b_axis = b_ndim - 1

    if a.shape[-1] != b.shape[-1]:
        raise ValueError('Axis dimension mismatch')

    if a_axis:
        a = cupy.rollaxis(a, a_axis, 0)
    if b_axis:
        b = cupy.rollaxis(b, b_axis, 0)

    ret_shape = a.shape[1:] + b.shape[1:]

    k = a.shape[0]
    n = a.size // k
    m = b.size // k

    return _tensordot_core(a, b, None, n, m, k, ret_shape)
Пример #12
0
def reshape_x_cupy(
    data: np.ndarray,
    dtype=cp.float16,
    hide_map_prob: float = 0.0,
    dropout_images_prob: List[float] = None,
) -> np.ndarray:
    """
    Get images from data as a list and preprocess them (using GPU).
    Input:
     - data: ndarray [num_examples x 6]
     -dtype: numpy dtype for the output array
     -hide_map_prob: Probability for removing the minimap (black square)
      from the sequence of images (0<=hide_map_prob<=1)
    Output:
    - ndarray [num_examples * 5, num_channels, H, W]

    """

    mean = cp.array([0.485, 0.456, 0.406], dtype=dtype)
    std = cp.array([0.229, 0.224, 0.225], dtype=dtype)
    reshaped = np.zeros(
        (len(data) * 5, 3, data[0][0].shape[0], data[0][0].shape[1]),
        dtype=dtype)
    for i in range(0, len(data)):
        black_minimap: bool = (random.random() <= hide_map_prob)
        for j in range(0, 5):
            black_image: bool = False
            if dropout_images_prob is not None:
                black_image = random.random() <= dropout_images_prob[j]
            if black_image:
                reshaped[i * 5 + j] = np.zeros(
                    (3, data[i][j].shape[0], data[i][j].shape[1]), dtype=dtype)
            else:
                img = cp.array(data[i][j], dtype=dtype)
                if black_minimap:  # Put a black square over the minimap
                    img[140:, :55] = cp.zeros((40, 55, 3), dtype=dtype)

                reshaped[i * 5 + j] = cp.asnumpy(
                    cp.rollaxis(
                        (img / dtype(255.0)) - mean / std,
                        2,
                        0,
                    ))

    return reshaped
Пример #13
0
    def reshape_x_cupy(data: np.ndarray, dtype=cp.float16) -> np.ndarray:
        """
        Get images from data as a list and preprocess them (using GPU).
        Input:
         - data: ndarray [num_examples x 6]
         -dtype: numpy dtype for the output array
          from the sequence of images
        Output:
        - ndarray [num_examples * 5, num_channels, H, W]
        """

        mean = cp.array([0.485, 0.456, 0.406], dtype=dtype)
        std = cp.array([0.229, 0.224, 0.225], dtype=dtype)
        reshaped = np.zeros((len(data) * 5, 3, 270, 480), dtype=dtype)
        for i in range(0, len(data)):
            for j in range(0, 5):
                img = cp.array(data[i][j], dtype=dtype) / 255
                reshaped[i * 5 + j] = cp.asnumpy(
                    cp.rollaxis((img - mean) / std, 2))
        return reshaped
Пример #14
0
def calc_single_view(ioperand, subscript):
    """Calculates 'ii->i' by cupy.diagonal if needed.

    Args:
        ioperand (cupy.ndarray): Array to be calculated diagonal.
        subscript (str):
            Specifies the subscripts. If the same label appears
            more than once, calculate diagonal for those axes.
    """

    assert ioperand.ndim == len(subscript)

    labels = set(subscript)
    label_to_axis = collections.defaultdict(list)
    for i, label in enumerate(subscript):
        label_to_axis[label].append(i)

    result = ioperand
    count_dict = collections.Counter(subscript)
    for label in labels:
        if count_dict[label] == 1:
            continue
        axes_to_diag = []
        for i, char in enumerate(subscript):
            if char == label:
                axes_to_diag.append(i)
        for axis in reversed(axes_to_diag[1:]):
            shape_a = result.shape[axis]
            shape_b = result.shape[axes_to_diag[0]]
            if shape_a != shape_b:
                raise ValueError('dimensions in operand 0 for collapsing'
                                 ' index \'{0}\' don\'t match'
                                 ' ({1} != {2})'.format(
                                     label, shape_a, shape_b))
            result = result.diagonal(0, axis, axes_to_diag[0])
            result = cupy.rollaxis(result, -1, axes_to_diag[0])
            subscript = subscript[:axis] + subscript[axis + 1:]
    return result, subscript
Пример #15
0
def deltaE_ciede94(lab1, lab2, kH=1, kC=1, kL=1, k1=0.045, k2=0.015):
    """Color difference according to CIEDE 94 standard

    Accommodates perceptual non-uniformities through the use of application
    specific scale factors (`kH`, `kC`, `kL`, `k1`, and `k2`).

    Parameters
    ----------
    lab1 : array_like
        reference color (Lab colorspace)
    lab2 : array_like
        comparison color (Lab colorspace)
    kH : float, optional
        Hue scale
    kC : float, optional
        Chroma scale
    kL : float, optional
        Lightness scale
    k1 : float, optional
        first scale parameter
    k2 : float, optional
        second scale parameter

    Returns
    -------
    dE : array_like
        color difference between `lab1` and `lab2`

    Notes
    -----
    deltaE_ciede94 is not symmetric with respect to lab1 and lab2.  CIEDE94
    defines the scales for the lightness, hue, and chroma in terms of the first
    color.  Consequently, the first color should be regarded as the "reference"
    color.

    `kL`, `k1`, `k2` depend on the application and default to the values
    suggested for graphic arts

    ==========  ==============  ==========
    Parameter    Graphic Arts    Textiles
    ==========  ==============  ==========
    `kL`         1.000           2.000
    `k1`         0.045           0.048
    `k2`         0.015           0.014
    ==========  ==============  ==========

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Color_difference
    .. [2] http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html
    """
    L1, C1 = cp.rollaxis(lab2lch(lab1), -1)[:2]
    L2, C2 = cp.rollaxis(lab2lch(lab2), -1)[:2]

    dL = L1 - L2
    dC = C1 - C2
    dH2 = get_dH2(lab1, lab2)

    SL = 1
    SC = 1 + k1 * C1
    SH = 1 + k2 * C1

    dE2 = dL / (kL * SL)
    dE2 *= dE2
    tmp = dC / (kC * SC)
    tmp *= tmp
    dE2 += tmp
    tmp = kH * SH
    tmp *= tmp
    dE2 += dH2 / tmp
    return cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2)
Пример #16
0
def test_each_channel():
    filtered = edges_each(COLOR_IMAGE)
    for i, channel in enumerate(cp.rollaxis(filtered, axis=-1)):
        expected = img_as_float(filters.sobel(COLOR_IMAGE[:, :, i]))
        assert_allclose(channel, expected)
Пример #17
0
def test_each_channel_with_filter_argument():
    filtered = smooth_each(COLOR_IMAGE, SIGMA)
    for i, channel in enumerate(cp.rollaxis(filtered, axis=-1)):
        assert_allclose(channel, smooth(COLOR_IMAGE[:, :, i]))
Пример #18
0
def deltaE_ciede2000(lab1, lab2, kL=1, kC=1, kH=1):
    """Color difference as given by the CIEDE 2000 standard.

    CIEDE 2000 is a major revision of CIDE94.  The perceptual calibration is
    largely based on experience with automotive paint on smooth surfaces.

    Parameters
    ----------
    lab1 : array_like
        reference color (Lab colorspace)
    lab2 : array_like
        comparison color (Lab colorspace)
    kL : float (range), optional
        lightness scale factor, 1 for "acceptably close"; 2 for "imperceptible"
        see deltaE_cmc
    kC : float (range), optional
        chroma scale factor, usually 1
    kH : float (range), optional
        hue scale factor, usually 1

    Returns
    -------
    deltaE : array_like
        The distance between `lab1` and `lab2`

    Notes
    -----
    CIEDE 2000 assumes parametric weighting factors for the lightness, chroma,
    and hue (`kL`, `kC`, `kH` respectively).  These default to 1.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Color_difference
    .. [2] http://www.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
           :DOI:`10.1364/AO.33.008069`
    .. [3] M. Melgosa, J. Quesada, and E. Hita, "Uniformity of some recent
           color metrics tested with an accurate color-difference tolerance
           dataset," Appl. Opt. 33, 8069-8077 (1994).
    """
    warnings.warn(
        "The numerical accuracy of this function on the GPU is reduced "
        "relative to the CPU version"
    )
    unroll = False
    if lab1.ndim == 1 and lab2.ndim == 1:
        unroll = True
        if lab1.ndim == 1:
            lab1 = lab1[None, :]
        if lab2.ndim == 1:
            lab2 = lab2[None, :]
    L1, a1, b1 = cp.rollaxis(lab1, -1)[:3]
    L2, a2, b2 = cp.rollaxis(lab2, -1)[:3]

    # distort `a` based on average chroma
    # then convert to lch coordines from distorted `a`
    # all subsequence calculations are in the new coordiantes
    # (often denoted "prime" in the literature)
    Cbar = 0.5 * (cp.hypot(a1, b1) + cp.hypot(a2, b2))
    c7 = Cbar ** 7
    G = 0.5 * (1 - cp.sqrt(c7 / (c7 + 25 ** 7)))
    scale = 1 + G
    C1, h1 = _cart2polar_2pi(a1 * scale, b1)
    C2, h2 = _cart2polar_2pi(a2 * scale, b2)
    # recall that c, h are polar coordiantes.  c==r, h==theta

    # cide2000 has four terms to delta_e:
    # 1) Luminance term
    # 2) Hue term
    # 3) Chroma term
    # 4) hue Rotation term

    # lightness term
    Lbar = 0.5 * (L1 + L2)
    tmp = Lbar - 50
    tmp *= tmp
    SL = 1 + 0.015 * tmp / cp.sqrt(20 + tmp)
    L_term = (L2 - L1) / (kL * SL)

    # chroma term
    Cbar = 0.5 * (C1 + C2)  # new coordiantes
    SC = 1 + 0.045 * Cbar
    C_term = (C2 - C1) / (kC * SC)

    # hue term
    h_diff = h2 - h1
    h_sum = h1 + h2
    CC = C1 * C2

    dH = h_diff.copy()
    dH[h_diff > np.pi] -= 2 * np.pi
    dH[h_diff < -np.pi] += 2 * np.pi
    dH[CC == 0.] = 0.  # if r == 0, dtheta == 0
    dH_term = 2 * cp.sqrt(CC) * cp.sin(dH / 2)

    Hbar = h_sum.copy()
    mask = cp.logical_and(CC != 0., cp.abs(h_diff) > np.pi)
    Hbar[mask * (h_sum < 2 * np.pi)] += 2 * np.pi
    Hbar[mask * (h_sum >= 2 * np.pi)] -= 2 * np.pi
    Hbar[CC == 0.] *= 2
    Hbar *= 0.5

    T = (1 -
         0.17 * cp.cos(Hbar - np.deg2rad(30)) +
         0.24 * cp.cos(2 * Hbar) +
         0.32 * cp.cos(3 * Hbar + np.deg2rad(6)) -
         0.20 * cp.cos(4 * Hbar - np.deg2rad(63))
         )
    SH = 1 + 0.015 * Cbar * T

    H_term = dH_term / (kH * SH)

    # hue rotation
    c7 = Cbar ** 7
    Rc = 2 * cp.sqrt(c7 / (c7 + 25 ** 7))
    tmp = (cp.rad2deg(Hbar) - 275) / 25
    tmp *= tmp
    dtheta = np.deg2rad(30) * cp.exp(-tmp)
    R_term = -cp.sin(2 * dtheta) * Rc * C_term * H_term

    # put it all together
    dE2 = L_term * L_term
    dE2 += C_term * C_term
    dE2 += H_term * H_term
    dE2 += R_term
    cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2)
    if unroll:
        dE2 = dE2[0]
    return dE2
Пример #19
0
def deltaE_cmc(lab1, lab2, kL=1, kC=1):
    """Color difference from the  CMC l:c standard.

    This color difference was developed by the Colour Measurement Committee
    (CMC) of the Society of Dyers and Colourists (United Kingdom). It is
    intended for use in the textile industry.

    The scale factors `kL`, `kC` set the weight given to differences in
    lightness and chroma relative to differences in hue.  The usual values are
    ``kL=2``, ``kC=1`` for "acceptability" and ``kL=1``, ``kC=1`` for
    "imperceptibility".  Colors with ``dE > 1`` are "different" for the given
    scale factors.

    Parameters
    ----------
    lab1 : array_like
        reference color (Lab colorspace)
    lab2 : array_like
        comparison color (Lab colorspace)

    Returns
    -------
    dE : array_like
        distance between colors `lab1` and `lab2`

    Notes
    -----
    deltaE_cmc the defines the scales for the lightness, hue, and chroma
    in terms of the first color.  Consequently
    ``deltaE_cmc(lab1, lab2) != deltaE_cmc(lab2, lab1)``

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Color_difference
    .. [2] http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html
    .. [3] F. J. J. Clarke, R. McDonald, and B. Rigg, "Modification to the
           JPC79 colour-difference formula," J. Soc. Dyers Colour. 100, 128-132
           (1984).
    """
    L1, C1, h1 = cp.rollaxis(lab2lch(lab1), -1)[:3]
    L2, C2, h2 = cp.rollaxis(lab2lch(lab2), -1)[:3]

    dC = C1 - C2
    dL = L1 - L2
    dH2 = get_dH2(lab1, lab2)

    T = cp.where(cp.logical_and(cp.rad2deg(h1) >= 164, cp.rad2deg(h1) <= 345),
                 0.56 + 0.2 * cp.abs(np.cos(h1 + cp.deg2rad(168))),
                 0.36 + 0.4 * cp.abs(np.cos(h1 + cp.deg2rad(35)))
                 )
    c1_4 = C1 ** 4
    F = cp.sqrt(c1_4 / (c1_4 + 1900))

    SL = cp.where(L1 < 16, 0.511, 0.040975 * L1 / (1. + 0.01765 * L1))
    SC = 0.638 + 0.0638 * C1 / (1. + 0.0131 * C1)
    SH = SC * (F * T + 1 - F)

    dE2 = (dL / (kL * SL)) ** 2
    dE2 += (dC / (kC * SC)) ** 2
    dE2 += dH2 / (SH ** 2)
    return cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2)
Пример #20
0
def percentile(a, q, axis=None, out=None, interpolation='linear',
               keepdims=False):
    """Computes the q-th percentile of the data along the specified axis.

    Args:
        a (cupy.ndarray): Array for which to compute percentiles.
        q (float, tuple of floats or cupy.ndarray): Percentiles to compute
            in the range between 0 and 100 inclusive.
        axis (int or tuple of ints): Along which axis or axes to compute the
            percentiles. The flattened array is used by default.
        out (cupy.ndarray): Output array.
        interpolation (str): Interpolation method when a quantile lies between
            two data points. ``linear`` interpolation is used by default.
            Supported interpolations are``lower``, ``higher``, ``midpoint``,
            ``nearest`` and ``linear``.
        keepdims (bool): If ``True``, the axis is remained as an axis of
            size one.

    Returns:
        cupy.ndarray: The percentiles of ``a``, along the axis if specified.

    .. seealso:: :func:`numpy.percentile`

    """
    q = cupy.asarray(q, dtype=a.dtype)
    if q.ndim == 0:
        q = q[None]
        zerod = True
    else:
        zerod = False
    if q.ndim > 1:
        raise ValueError('Expected q to have a dimension of 1.\n'
                         'Actual: {0} != 1'.format(q.ndim))

    if keepdims:
        if axis is None:
            keepdim = (1,) * a.ndim
        else:
            keepdim = list(a.shape)
            for ax in axis:
                keepdim[ax % a.ndim] = 1
            keepdim = tuple(keepdim)

    # Copy a since we need it sorted but without modifying the original array
    if isinstance(axis, int):
        axis = axis,
    if axis is None:
        ap = a.flatten()
        nkeep = 0
    else:
        # Reduce axes from a and put them last
        axis = tuple(ax % a.ndim for ax in axis)
        keep = set(range(a.ndim)) - set(axis)
        nkeep = len(keep)
        for i, s in enumerate(sorted(keep)):
            a = a.swapaxes(i, s)
        ap = a.reshape(a.shape[:nkeep] + (-1,)).copy()

    axis = -1
    ap.sort(axis=axis)
    Nx = ap.shape[axis]
    indices = q * 0.01 * (Nx - 1.)  # percents to decimals

    if interpolation == 'lower':
        indices = cupy.floor(indices).astype(cupy.int32)
    elif interpolation == 'higher':
        indices = cupy.ceil(indices).astype(cupy.int32)
    elif interpolation == 'midpoint':
        indices = 0.5 * (cupy.floor(indices) + cupy.ceil(indices))
    elif interpolation == 'nearest':
        # TODO(hvy): Implement nearest using around
        raise ValueError("'nearest' interpolation is not yet supported. "
                         'Please use any other interpolation method.')
    elif interpolation == 'linear':
        pass
    else:
        raise ValueError('Unexpected interpolation method.\n'
                         "Actual: '{0}' not in ('linear', 'lower', 'higher', "
                         "'midpoint')".format(interpolation))

    if indices.dtype == cupy.int32:
        ret = cupy.rollaxis(ap, axis)
        ret = ret.take(indices, axis=0, out=out)
    else:
        if out is None:
            ret = cupy.empty(ap.shape[:-1] + q.shape, dtype=cupy.float64)
        else:
            ret = cupy.rollaxis(out, 0, out.ndim)

        cupy.ElementwiseKernel(
            'S idx, raw T a, raw int32 offset', 'U ret',
            '''
            ptrdiff_t idx_below = floor(idx);
            U weight_above = idx - idx_below;

            ptrdiff_t offset_i = _ind.get()[0] * offset;
            ret = a[offset_i + idx_below] * (1.0 - weight_above)
              + a[offset_i + idx_below + 1] * weight_above;
            ''',
            'percentile_weightnening'
        )(indices, ap, ap.shape[-1] if ap.ndim > 1 else 0, ret)
        ret = cupy.rollaxis(ret, -1)  # Roll q dimension back to first axis

    if zerod:
        ret = ret.squeeze(0)
    if keepdims:
        if q.size > 1:
            keepdim = (-1,) + keepdim
        ret = ret.reshape(keepdim)

    return cupy.ascontiguousarray(ret)
Пример #21
0
 def test_rollaxis_failure(self):
     a = testing.shaped_arange((2, 3, 4))
     with self.assertRaises(ValueError):
         cupy.rollaxis(a, 3)
Пример #22
0
def _quantile_unchecked(a, q, axis=None, out=None, interpolation='linear',
                        keepdims=False):
    if q.ndim == 0:
        q = q[None]
        zerod = True
    else:
        zerod = False
    if q.ndim > 1:
        raise ValueError('Expected q to have a dimension of 1.\n'
                         'Actual: {0} != 1'.format(q.ndim))
    if keepdims:
        if axis is None:
            keepdim = (1,) * a.ndim
        else:
            keepdim = list(a.shape)
            for ax in axis:
                keepdim[ax % a.ndim] = 1
            keepdim = tuple(keepdim)

    # Copy a since we need it sorted but without modifying the original array
    if isinstance(axis, int):
        axis = axis,
    if axis is None:
        ap = a.flatten()
        nkeep = 0
    else:
        # Reduce axes from a and put them last
        axis = tuple(ax % a.ndim for ax in axis)
        keep = set(range(a.ndim)) - set(axis)
        nkeep = len(keep)
        for i, s in enumerate(sorted(keep)):
            a = a.swapaxes(i, s)
        ap = a.reshape(a.shape[:nkeep] + (-1,)).copy()

    axis = -1
    ap.sort(axis=axis)
    Nx = ap.shape[axis]
    indices = q * (Nx - 1.)

    if interpolation == 'lower':
        indices = cupy.floor(indices).astype(cupy.int32)
    elif interpolation == 'higher':
        indices = cupy.ceil(indices).astype(cupy.int32)
    elif interpolation == 'midpoint':
        indices = 0.5 * (cupy.floor(indices) + cupy.ceil(indices))
    elif interpolation == 'nearest':
        # TODO(hvy): Implement nearest using around
        raise ValueError('\'nearest\' interpolation is not yet supported. '
                         'Please use any other interpolation method.')
    elif interpolation == 'linear':
        pass
    else:
        raise ValueError('Unexpected interpolation method.\n'
                         'Actual: \'{0}\' not in (\'linear\', \'lower\', '
                         '\'higher\', \'midpoint\')'.format(interpolation))

    if indices.dtype == cupy.int32:
        ret = cupy.rollaxis(ap, axis)
        ret = ret.take(indices, axis=0, out=out)
    else:
        if out is None:
            ret = cupy.empty(ap.shape[:-1] + q.shape, dtype=cupy.float64)
        else:
            ret = cupy.rollaxis(out, 0, out.ndim)

        cupy.ElementwiseKernel(
            'S idx, raw T a, raw int32 offset, raw int32 size', 'U ret',
            '''
            ptrdiff_t idx_below = floor(idx);
            U weight_above = idx - idx_below;

            ptrdiff_t max_idx = size - 1;
            ptrdiff_t offset_bottom = _ind.get()[0] * offset + idx_below;
            ptrdiff_t offset_top = min(offset_bottom + 1, max_idx);

            U diff = a[offset_top] - a[offset_bottom];

            if (weight_above < 0.5) {
                ret = a[offset_bottom] + diff * weight_above;
            } else {
                ret = a[offset_top] - diff * (1 - weight_above);
            }
            ''',
            'percentile_weightnening'
        )(indices, ap, ap.shape[-1] if ap.ndim > 1 else 0, ap.size, ret)
        ret = cupy.rollaxis(ret, -1)  # Roll q dimension back to first axis

    if zerod:
        ret = ret.squeeze(0)
    if keepdims:
        if q.size > 1:
            keepdim = (-1,) + keepdim
        ret = ret.reshape(keepdim)

    return _core._internal_ascontiguousarray(ret)
Пример #23
0
 def test_rollaxis_failure(self):
     a = testing.shaped_arange((2, 3, 4))
     with self.assertRaises(ValueError):
         cupy.rollaxis(a, 3)