Пример #1
0
    def apply(self, source_array):
        # Split image into channels as cupy (GPU) arrays
        blue_channel = cp.asarray(source_array[:, :, 0])
        green_channel = cp.asarray(source_array[:, :, 1])
        red_channel = cp.asarray(source_array[:, :, 2])

        # Determine parameters for CUDA Blur
        height, width = source_array.shape[:2]

        dim_grid_x = math.ceil(width / DIM_BLOCK)
        dim_grid_y = math.ceil(height / DIM_BLOCK)

        # Blur each channel of the image
        for channel in (red_channel, green_channel, blue_channel):
            self.apply_filter(
                (dim_grid_x, dim_grid_y),
                (DIM_BLOCK, DIM_BLOCK),
                (
                    channel,
                    channel,
                    cp.uint32(width),
                    cp.uint32(height),
                    cp.uint32(self.filter_width),
                ),
            )

        # Convert RGB to HSV
        hue_channel, sat_channel, val_channel = cuda_rgb2hsv(
            red_channel, green_channel, blue_channel)

        # Threshold the image
        result_array = self.cuda_kernel(hue_channel, sat_channel, val_channel)

        # Convert back to numpy array
        return cp.asnumpy(result_array)
Пример #2
0
    def apply(self, source_array):
        # Numpy array to store the output
        result_array = np.empty_like(source_array)

        # Split image into channels as cupy (GPU) arrays
        red_channel = cp.asarray(
            source_array[:, :, 0])  # TODO Make work for greyscale images
        green_channel = cp.asarray(source_array[:, :, 1])
        blue_channel = cp.asarray(source_array[:, :, 2])

        # Determine parameters for CUDA Blur
        height, width = source_array.shape[:2]

        dim_grid_x = math.ceil(width / DIM_BLOCK)
        dim_grid_y = math.ceil(height / DIM_BLOCK)

        # Blur each channel of the image
        for channel in (red_channel, green_channel, blue_channel):
            self.apply_filter(
                (dim_grid_x, dim_grid_y),
                (DIM_BLOCK, DIM_BLOCK),
                (
                    channel,
                    channel,
                    cp.uint32(width),
                    cp.uint32(height),
                    cp.uint32(self.filter_width),
                ),
            )

        # Convert the results back to a single numpy array
        result_array[:, :, 0] = cp.asnumpy(red_channel)
        result_array[:, :, 1] = cp.asnumpy(green_channel)
        result_array[:, :, 2] = cp.asnumpy(blue_channel)

        return result_array
Пример #3
0
def reduction(x, y, size):
    tid = jit.threadIdx.x
    ntid = jit.blockDim.x

    value = cupy.float32(0)
    for i in range(tid, size, ntid):
        value += x[i]

    smem = jit.shared_memory(cupy.float32, 1024)
    smem[tid] = value

    jit.syncthreads()

    if tid == cupy.uint32(0):
        value = cupy.float32(0)
        for i in range(ntid):
            value += smem[i]
        y[0] = value
Пример #4
0
def reduction(x, y, size):
    tid = jit.blockIdx.x * jit.blockDim.x + jit.threadIdx.x
    ntid = jit.blockDim.x * jit.gridDim.x

    value = cupy.float32(0)
    for i in range(tid, size, ntid):
        value += x[i]

    smem = jit.shared_memory(cupy.float32, 1024)
    smem[jit.threadIdx.x] = value

    jit.syncthreads()

    if jit.threadIdx.x == cupy.uint32(0):
        value = cupy.float32(0)
        for i in range(jit.blockDim.x):
            value += smem[i]
        jit.atomic_add(y, 0, value)
    def get_number_of_ranges(record: OrderedDict) -> int:
        """
        Gets the number of ranges for the record.

        Parameters
        ----------
        record: OrderedDict
            hdf5 record containing antennas_iq data and metadata

        Returns
        -------
        num_ranges: int
            The number of ranges of the data
        """
        # Infer the number of ranges from the record metadata
        first_range_offset = ProcessAntennasIQ2Bfiq.calculate_first_range_rtt(record) * 1e-6 * record['rx_sample_rate']
        num_ranges = record['num_samps'] - xp.int32(first_range_offset) - record['blanked_samples'][-1]

        # 3 extra samples taken for each record (not sure why)
        num_ranges = num_ranges - 3

        return xp.uint32(num_ranges)
Пример #6
0
@jit.rawkernel()
def reduction(x, y, size):
    tid = jit.threadIdx.x
    ntid = jit.blockDim.x

    value = cupy.float32(0)
    for i in range(tid, size, ntid):
        value += x[i]

    smem = jit.shared_memory(cupy.float32, 1024)
    smem[tid] = value

    jit.syncthreads()

    if tid == cupy.uint32(0):
        value = cupy.float32(0)
        for i in range(ntid):
            value += smem[i]
        y[0] = value


size = cupy.uint32(2 ** 22)
x = cupy.random.normal(size=(size,), dtype=cupy.float32)
y = cupy.empty((1,), dtype=cupy.float32)

reduction[1, 1024](x, y, size)

print(y[0])
print(x.sum())
Пример #7
0
Let G(n)=∑k=1nf(k)k2φ(k) where φ(n) is Euler's totient function.

For example,
G(10)=3053 and
G(105)≡157612967(mod1000000007).

Find G(1012)mod1000000007.
"""

import cupy as cp
import numpy as np
import itertools as ittr
import numba
from math import gcd

MOD = cp.uint32(1e9+7)


import numpy as np
from math import gcd
import itertools as ittr
from sympy.ntheory import totient

MOD = np.uint32(1e9+7)





n = 3
tot = 0