def main(_p, nogui): # NB, the argument 'nogui' is specific to PFEM only!
    
    p = getParameters(_p)

    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    cupyutil.load(fileName, withMPI, comm, myid, numberPart)
    
    # --- Input parameters --- #
    cfd_file = 'waterColoumnFallWithFlexibleObstacle_water_Pfem_NotMatching'
    csd_file = 'waterColoumnFallWithFlexibleObstacle_obstacle_Mtf_E_1_0e6_NotMatching'
    
    # --- Initialize the fluid solver --- #
    import cupydoInterfaces.PfemInterface
    fluidSolver = cupydoInterfaces.PfemInterface.PfemSolver(cfd_file, 17, p['dt'])
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydoInterfaces.MtfInterface
        solidSolver = cupydoInterfaces.MtfInterface.MtfSolver(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    #interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    interpolator = cupyinterp.RBFInterpolator(manager, fluidSolver, solidSolver, p['rbfRadius'], comm)
    #interpolator = cupyinterp.TPSInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], comm)
    
    # --- Launch the FSI computation --- #
    algorithm.run()
def main(_p, nogui): # NB, the argument 'nogui' is specific to PFEM only!
    
    p = getParameters(_p)
    
    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    cupyutil.load(p['testName'], withMPI, comm, myid, numberPart)
    
    # --- Input parameters --- #
    cfd_file = p['cfdFile']
    csd_file = p['csdFile']
    
    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 14, p['dt'])
    fluidSolver.pfem.pbl.betaFSI = p['betaFSI']
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], comm)
    algorithm.atikenCrit = p['aitkenCrit']
    
    # --- Launch the FSI computation --- #
    algorithm.run()
def main(_p, nogui):
    
    p = getParameters(_p)
    
    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    
    
    cfd_file = 'birdImpact_deformable_panel_bird_Pfem'
    csd_file = 'birdImpact_deformable_panel_panel_alu_Mtf'
    
    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 13, p['dt'])
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], comm)
    
    # --- Launch the FSI computation --- #
    algorithm.run()
Пример #4
0
    def __init__(self, p):
        # --- Set up MPI --- #
        withMPI, comm, myId, numberPart = cupyutil.getMpi()
        rootProcess = 0

        # --- Initialize the fluid and solid solvers --- #
        fluidSolver = self.__initFluid(p, withMPI, comm)
        cupyutil.mpiBarrier(comm)
        solidSolver = self.__initSolid(p, myId)
        cupyutil.mpiBarrier(comm)

        # --- Initialize the FSI manager --- #
        manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['compType'], comm)
        cupyutil.mpiBarrier()

        # --- Initialize the interpolator --- #
        if p['interpolator'] == 'Matching':
            interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
        elif p['interpolator'] == 'RBF':
            interpolator = cupyinterp.RBFInterpolator(manager, fluidSolver, solidSolver, p['rbfRadius'], comm)
        elif p['interpolator'] == 'TPS':
            interpolator = cupyinterp.TPSInterpolator(manager, fluidSolver, solidSolver, comm)
        else:
            raise RuntimeError(p['interpolator'], 'not available! (avail: "Matching", "RBF" or "TPS").\n')
        # if petsc is used, then some options can be set
        if withMPI and 'interpOpts' in p:
            for linSolver in interpolator.getLinearSolvers():
                linSolver.setMaxNumberIterations(p['interpOpts'][0])
                linSolver.setPreconditioner(p['interpOpts'][1])

        # --- Initialize the FSI criterion --- #
        if p['algorithm'] == 'Explicit':
            print 'Explicit simulations requested, criterion redefined to None.'
        if p['criterion'] == 'Displacements':
            criterion = cupycrit.DispNormCriterion(p['tol'])
        else:
            raise RuntimeError(p['criterion'], 'not available! (avail: "Displacements").\n')
        cupyutil.mpiBarrier()

        # --- Initialize the FSI algorithm --- #
        if p['algorithm'] == 'Explicit':
            self.algorithm = cupyalgo.AlgorithmExplicit(manager, fluidSolver, solidSolver, interpolator,
                p['dt'], p['tTot'], p['timeItTresh'], comm)
        elif p['algorithm'] == 'StaticBGS':
            self.algorithm = cupyalgo.AlgorithmBGSStaticRelax(manager, fluidSolver, solidSolver, interpolator, criterion,
                p['maxIt'], p['dt'], p['tTot'], p['timeItTresh'], p['omega'], comm)
        elif p['algorithm'] == 'AitkenBGS':
            self.algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion,
                p['maxIt'], p['dt'], p['tTot'], p['timeItTresh'], p['omega'], comm)
        elif p ['algorithm'] == 'IQN_ILS':
            self.algorithm = cupyalgo.AlgorithmIQN_ILS(manager, fluidSolver, solidSolver, interpolator, criterion,
                p['maxIt'], p['dt'], p['tTot'], p['timeItTresh'], p['omega'], p['nSteps'], p['firstItTgtMat'], comm)
        else:
            raise RuntimeError(p['algorithm'], 'not available! (avail: "Explicit", "StaticBGS", "AitkenBGS" or "IQN_ILS").\n')
        cupyutil.mpiBarrier()
def main(_p, nogui):  # NB, the argument 'nogui' is specific to PFEM only!

    p = getParameters(_p)

    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0

    cfd_file = 'VIV_cantileverBeam_air_Pfem'
    csd_file = 'VIV_cantileverBeam_beam_Mtf'
    nDim = 2
    tollFSI = 1e-6
    dt = 0.0005
    tTot = 10.
    nFSIIterMax = 10
    omegaMax = 1.0
    computationType = 'unsteady'

    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 23, dt)

    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    if battery:
        fluidSolver.pfem.scheme.savefreq = int(tTot / dt)
    if nogui:
        fluidSolver.pfem.gui = None
    # ---

    cupyutil.mpiBarrier(comm)

    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, computationType)

        # --- This part is specific to Metafor ---
        if battery:
            solidSolver.saveAllFacs = False
        # ---

    cupyutil.mpiBarrier(comm)

    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, nDim, computationType,
                              comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(
        manager, fluidSolver, solidSolver, comm)

    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(tollFSI)
    cupyutil.mpiBarrier()

    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver,
                                                 solidSolver, interpolator,
                                                 criterion, nFSIIterMax, dt,
                                                 tTot, 0, omegaMax, comm)

    # --- Launch the FSI computation --- #
    algorithm.run()